repvggblock代码python
时间: 2023-11-12 21:11:03 浏览: 148
python烟花代码.zip
以下是RepVGG Block的Python代码实现:
```python
import torch.nn as nn
import torch.nn.functional as F
class RepVGGBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, dilation=1, groups=1, deploy=False):
super(RepVGGBlock, self).__init__()
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
self.deploy = deploy
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias=False)
self.bn = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
if deploy:
self.rbr_reparam = nn.Conv2d(out_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias=True)
def forward(self, x):
if not self.deploy:
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
else:
weight = self.conv.weight
bias = self.conv.bias
rbr_weight, rbr_bias = self._get_reparam_weight_bias(weight, bias)
x = F.conv2d(x, rbr_weight, rbr_bias, self.stride, self.padding, self.dilation, self.groups)
return x
def _get_reparam_weight_bias(self, weight, bias):
kernel_size = self.kernel_size
stride = self.stride
padding = self.padding
dilation = self.dilation
groups = self.groups
assert kernel_size == 3 and stride == 1
assert padding == 1 or padding == (1, 1)
assert dilation == 1 and groups == 1
assert weight.shape[2] == kernel_size and weight.shape[3] == kernel_size
assert isinstance(self.bn, nn.BatchNorm2d)
gamma = self.bn.weight
beta = self.bn.bias
mean = self.bn.running_mean
var = self.bn.running_var
eps = self.bn.eps
std = (var + eps).sqrt()
t = weight.transpose(0, 1) / std.reshape(-1, 1, 1, 1)
t = t.reshape(weight.shape[1], -1)
U, S, V = torch.svd(t)
U = U[:, :kernel_size]
V = V[:, :kernel_size]
S = S[:kernel_size]
d = torch.sign(torch.diag(V))
U *= d
V *= d
rbr_weight = (V @ U.transpose(0, 1)).reshape(weight.shape)
rbr_bias = beta - gamma * mean / std
rbr_bias = (V @ S @ U.transpose(0, 1) @ rbr_bias.reshape(-1, 1)).reshape(-1) + bias
return rbr_weight, rbr_bias
```
这里实现了RepVGG Block的前向传播方法 forward() 和获取重参数化权重和偏置的方法 _get_reparam_weight_bias()。RepVGG Block 可以根据 deploy 参数选择是否使用重参数化技术。如果 deploy 参数为 False,则使用普通的卷积、批归一化和 ReLU 激活函数;如果 deploy 参数为 True,则使用重参数化后的卷积和带有偏置的 ReLU 激活函数。
阅读全文