richardson迭代法matlab
时间: 2023-07-13 17:21:15 浏览: 49
广义理查德森迭代法matlab编程
4星 · 用户满意度95%
Richardson迭代法是一种解线性方程组的迭代方法,可以在MATLAB中实现。具体实现方法如下:
假设要解线性方程组Ax=b,其中A是一个n×n矩阵,b是一个n×1向量。
1. 设置初始解x0,迭代次数k和迭代矩阵T。
2. 计算迭代矩阵T:T=D^{-1}(L+U),其中D、L和U分别是A的对角线、下三角和上三角矩阵。
3. 进行k次迭代计算:x_{k+1}=Tx_k+(I-TA)x_0。
4. 输出x_k作为解。
在MATLAB中,可以用以下代码实现Richardson迭代法:
```matlab
function x = richardson(A, b, x0, k)
% A为系数矩阵,b为右端向量,x0为初始解,k为迭代次数
n = length(b);
D = diag(diag(A));
L = tril(A, -1);
U = triu(A, 1);
T = inv(D) * (L + U);
x = x0;
for i = 1:k
x = T * x + inv(D) * b;
end
end
```
其中,inv()函数用于求矩阵的逆,diag()函数用于取矩阵的对角线元素,tril()和triu()函数用于取矩阵的下三角和上三角部分。
阅读全文