clc,clear Eb_N0_log=0:0.5:10; %设置信噪比 Eb_N0=10.^(Eb_N0_log/10); R_coded=4/7; %R BER_coded=zeros(1,21); %store BER in different Eb/N0 G=[1 1 0 1 0 0 0; 0 1 1 0 1 0 0; 1 1 1 0 0 1 0; 1 0 1 0 0 0 1]; %信号编码矩阵 H=[1 0 0 1 0 1 1; 0 1 0 1 1 1 0; 0 0 1 0 1 1 1]; %校验比特矩阵

时间: 2024-01-04 17:01:58 浏览: 254
这段代码是用于模拟一个基于卷积编码的通信系统。其中: - clc, clear:清除命令窗口和工作区中的变量,以避免混淆。 - Eb_N0_log=0:0.5:10;:设置不同的信噪比(Eb/N0)值,从0到10,步长为0.5。 - Eb_N0=10.^(Eb_N0_log/10);:将dB单位的信噪比转换为线性单位,并存储在Eb_N0变量中。 - R_coded=4/7;:这是指卷积编码方案的编码率,即每个输入比特产生7个输出比特,因此编码率为4/7。 - BER_coded=zeros(1,21);:初始化一个用于存储不同Eb/N0值下的误码率(BER)的数组,包含21个元素。 - G、H:编码矩阵和校验矩阵,用于将输入比特转换为输出比特,并检测和纠正错误。 - 其他部分的代码可能包括生成随机比特序列、编码比特序列、添加高斯噪声、译码比特序列、计算误码率等步骤。
相关问题

% CDMA系统仿真 clear all; clc; % 初始化参数 N = 8; % 用户数 M = 4; % 节点数 L = 16; % 符号数 SNR = 10; % 信噪比 EbN0 = SNR + 10*log10(log2(M)/N); % 计算Eb/N0 h = randn(M, N) + j*randn(M, N); % 信道系数 % 生成随机数据 data = randi([0 M-1], N, L); % 生成码片序列 chip = hadamard(N); % 生成调制信号 mod_signal = qammod(data, M); % 将调制信号分配到码片上 tx_signal = zeros(M, L*N); for i = 1:N tx_signal(i,:) = repmat(chip(i,:), 1, L) .* repmat(mod_signal(i,:), 1, N); end % 添加高斯噪声 noise = randn(M, L*N) * sqrt(0.5 / (10^(EbN0/10))); rx_signal = tx_signal + noise; % 信道估计 est_h = zeros(M, N); for i = 1:N mod_chip = repmat(chip(i,:), 1, L); est_mod_signal = (rx_signal .* repmat(mod_chip, N, 1)) * sqrt(N/L); est_h(:,i) = est_mod_signal ./ mod_signal(i,:); end % 解调信号 demod_signal = zeros(N, L); for i = 1:N demod_signal(i,:) = qamdemod(rx_signal(i,:), M); end % 输出误码率 ber = sum(sum(demod_signal ~= data)) / (N*L)如何修改矩阵维度使得代码能正常运行

要解决这个问题,你需要将noise的维度与tx_signal的维度相匹配。在第19行的代码中,你可以使用reshape()函数来改变noise的维度,使其与tx_signal的维度相同。代码如下: ``` noise = reshape(noise, M, L*N); ``` 将这行代码添加到第19行的代码之后,就可以解决矩阵维度不一致的问题,使代码能够正常运行。

% 4PAM调制信号在高斯信道下的性能仿真 clear all; close all; clc %% 参数设置 N = 1e6; % 参考帧数 Eb = 1; % 参考能量 M = 4; % 调制阶数 %% 产生调制信号 b = randi([0 M-1], 1, N); % 随机产生0~M-1的整数 s = 2b-(M-1); % 4PAM调制信号 %% 产生高斯白噪声信号 SNR = 0:1:14; % 信噪比范围 Es = Eblog2(M); % 符号能量 for i = 1:length(SNR) N0 = Es/(10^(SNR(i)/10)); % 噪声功率 n = sqrt(N0/2)(randn(1, N)+1jrandn(1, N)); % 高斯白噪声 r = s + n; % 接收信号 r = r.'; % 转置,方便下一步计算 %% 多进制调制信号软输出检测 tau = 1.628; % 判决门限 for j = 1:N if real(r(j)) < -tau b_hat(j) = 0; elseif real(r(j)) < 0 b_hat(j) = 1; elseif real(r(j)) < tau b_hat(j) = 2; else b_hat(j) = 3; end end s_hat = 2b_hat-(M-1); % 解调结果 %% 计算误符号率和误比特率 err_symbols(i) = sum(s~=s_hat)/N; % 误符号率 err_bits(i) = err_symbols(i)log2(M); % 误比特率 end %% 绘制性能曲线 Pb_simb = err_bits; % 仿真误比特率 Pb_sims = err_symbols; % 仿真误符号率 figure semilogy(SNR, Pb_simb, 'b-', 'LineWidth', 2); hold on semilogy(SNR, Pb_sims, 'g-', 'LineWidth', 2); hold off grid on xlabel('SNR (dB)'); ylabel('Pb'); legend('理论误比特率曲线','理论误符号率曲线','仿真误比特率曲线','仿真误符号率曲线'); title('4PAM调制在高斯信道下的性能曲线');,添加理论误比特率曲线和理论误符号率曲线

可以通过Q函数计算4PAM调制在高斯信道下的理论误比特率和理论误符号率。修改代码如下: clear all; close all; clc %% 参数设置 N = 1e6; % 参考帧数 Eb = 1; % 参考能量 M = 4; % 调制阶数 %% 产生调制信号 b = randi([0 M-1], 1, N); % 随机产生0~M-1的整数 s = 2*b-(M-1); % 4PAM调制信号 %% 产生高斯白噪声信号 SNR = 0:1:14; % 信噪比范围 Es = Eb*log2(M); % 符号能量 for i = 1:length(SNR) N0 = Es/(10^(SNR(i)/10)); % 噪声功率 n = sqrt(N0/2)*(randn(1, N)+1j*randn(1, N)); % 高斯白噪声 r = s + n; % 接收信号 r = r.'; % 转置,方便下一步计算 %% 多进制调制信号软输出检测 tau = 1.628; % 判决门限 for j = 1:N if real(r(j)) < -tau b_hat(j) = 0; elseif real(r(j)) < 0 b_hat(j) = 1; elseif real(r(j)) < tau b_hat(j) = 2; else b_hat(j) = 3; end end s_hat = 2*b_hat-(M-1); % 解调结果 %% 计算误符号率和误比特率 err_symbols(i) = sum(s~=s_hat)/N; % 仿真误符号率 err_bits(i) = err_symbols(i)*log2(M); % 仿真误比特率 Pb_theory(i) = 3/2*qfunc(sqrt(2/5*Eb/N0)); % 理论误比特率 Ps_theory(i) = 2/3*Pb_theory(i); % 理论误符号率 end %% 绘制性能曲线 Pb_simb = err_bits; % 仿真误比特率 Pb_sims = err_symbols; % 仿真误符号率 figure semilogy(SNR, Pb_theory, 'r--', 'LineWidth', 2); hold on semilogy(SNR, Ps_theory, 'm--', 'LineWidth', 2); semilogy(SNR, Pb_simb, 'b-', 'LineWidth', 2); semilogy(SNR, Pb_sims, 'g-', 'LineWidth', 2); hold off grid on xlabel('SNR (dB)'); ylabel('Pb'); legend('理论误比特率曲线','理论误符号率曲线','仿真误比特率曲线','仿真误符号率曲线'); title('4PAM调制在高斯信道下的性能曲线');
阅读全文

相关推荐

% 通信系统仿真 clear all; close all; clc; % 参数设置 N = 1023; % Kasami序列长度 EbNo = 0:10; % 信噪范围 nBits = 40000; % 比特数 % 霍夫曼编码/译码 symbols = unique([0, 1]); p = [0.5, 0.5]; dict = huffmandict(symbols, p); % 循环码信道编码/译码 n = 15; % 码字长度 k = 4; % 信息长度 t=9; genPoly = cyclpoly(n-k+1, k, 'min'); trellis = poly2trellis(t, genPoly); enc = comm.ConvolutionalEncoder('TrellisStructure', trellis); dec = comm.ViterbiDecoder('TrellisStructure', trellis, 'InputFormat', 'Hard'); % GMSK调制/解调 modulator = comm.GMSKModulator('BitInput', true); demodulator = comm.GMSKDemodulator('BitOutput', true); % 高斯白噪声信道 channel = comm.AWGNChannel('BitsPerSymbol', log2(2), 'NoiseMethod', 'Signal to noise ratio (Eb/No)'); % 误码率计算 berCalc = comm.ErrorRate; % 仿真 for i = 1:length(EbNo) channel.EbNo = EbNo(i); while berCalc.NumErrors < 100 % 信源产生 data = kasami(N, i); % 霍夫曼编码 huffEncodedData = huffmanenco(data, dict); % 信道编码 encodedData = step(enc, huffEncodedData); % 调制 modSignal = step(modulator, encodedData); % 信道 noisySignal = step(channel, modSignal); % 解调 demodSignal = step(demodulator, noisySignal); % 信道译码 decodedData = step(dec, demodSignal); % 霍夫曼译码 huffDecodedData = huffmandeco(decodedData, dict); % 误码率计算 berCalc = step(berCalc, data, huffDecodedData); end ber(i) = berCalc(1); reset(berCalc); end % 画图 figure; semilogy(EbNo, ber, 'bo-'); grid on; xlabel('Eb/No (dB)'); ylabel('BER'); title('BER vs. Eb/No for Kasami-GMSK System'); % 生成Kasami序列 function y = kasami(N, index) if index < 1 || index > N error('Invalid index'); end x = de2bi(index-1, log2(N), 'left-msb'); y = zeros(1, N); for i = 1:N y(i) = 1 - 2*mod(sum(x.*circshift(x,[0 i-1])), 2); end end先生成一次kasami序列,将其作为霍夫曼编码的输入,得到的输出作为循环码的输出

大家在看

recommend-type

MotorContral.rar_VC++ 电机控制_上位机_电机_电机 上位机_电机vc上位机

这是电机控制方面上位机程序,需要vc++6.0开发,对学习电机控制很有帮助.
recommend-type

一种基于STM32的智能交通信号灯设计的研究.rar

一种基于STM32的智能交通信号灯设计的研究.rar
recommend-type

中国AI安防行业:Ambarella业绩反映AI需求强劲.zip

中国AI安防行业:Ambarella业绩反映AI需求强劲
recommend-type

【答题卡识别】 Hough变换答题卡识别【含Matlab源码 250期】.zip

Matlab领域上传的代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 图像识别:表盘识别、车道线识别、车牌识别、答题卡识别、电器识别、跌倒检测、动物识别、发票识别、服装识别、汉字识别、红绿灯识别、火灾检测、疾病分类、交通标志牌识别、口罩识别、裂缝识别、目标跟踪、疲劳检测、身份证识别、人民币识别、数字字母识别、手势识别、树叶识别、水果分级、条形码识别、瑕疵检测、芯片识别、指纹识别
recommend-type

挖掘机叉车工程车辆检测数据集VOC+YOLO格式5067张7类别.7z

集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):5067 标注数量(xml文件个数):5067 标注数量(txt文件个数):5067 标注类别数:7 标注类别名称:[“ConcreteTruck”,“Excavator”,“Forklift”,“Loader”,“Steamroller”,“Truck”,“Worker”] 对应中文名:[“混凝土运输车”、“挖掘机”、“叉车”、“装载机”、“压路机”、”卡车“、”工人“] 更多信息:https://blog.csdn.net/FL1623863129/article/details/142093679

最新推荐

recommend-type

基于springboot的酒店管理系统源码(java毕业设计完整源码+LW).zip

项目均经过测试,可正常运行! 环境说明: 开发语言:java JDK版本:jdk1.8 框架:springboot 数据库:mysql 5.7/8 数据库工具:navicat 开发软件:eclipse/idea
recommend-type

蓄电池与超级电容混合储能并网matlab simulink仿真模型 (1)混合储能采用低通滤波器进行功率分配,可有效抑制功率波动,并对超级电容的soc进行能量管理,soc较高时多放电,较低时少放电

蓄电池与超级电容混合储能并网matlab simulink仿真模型。 (1)混合储能采用低通滤波器进行功率分配,可有效抑制功率波动,并对超级电容的soc进行能量管理,soc较高时多放电,较低时少放电,soc较低时状态与其相反。 (2)蓄电池和超级电容分别采用单环恒流控制,研究了基于超级电容的SOC分区限值管理策略,分为放电下限区,放电警戒区,正常工作区,充电警戒区,充电上限区。 (3)采用三相逆变并网,将直流侧800v电压逆变成交流311v并网,逆变采用电压电流双闭环pi控制,pwm调制。 附有参考资料。
recommend-type

017 - 搞笑一句话台词.docx

017 - 搞笑一句话台词
recommend-type

基于微信小程序的购物系统+php后端毕业源码案例设计全部资料+详细文档.zip

【资源说明】 基于微信小程序的购物系统+php后端毕业源码案例设计全部资料+详细文档.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

基于APS.net的办公物品管理系统全部资料+详细文档.zip

【资源说明】 基于APS.net的办公物品管理系统全部资料+详细文档.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"