estimateChessboardSharpness 使用例程 C++
时间: 2023-07-11 15:28:10 浏览: 325
以下是一个使用C++和OpenCV库的 `estimateChessboardSharpness` 函数的示例代码:
```cpp
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
double estimateChessboardSharpness(Mat chessboardImage) {
// Convert the image to grayscale
Mat grayImage;
cvtColor(chessboardImage, grayImage, COLOR_BGR2GRAY);
// Compute the Canny edges of the image
Mat edges;
Canny(grayImage, edges, 50, 150);
// Compute the average edge gradient
Scalar mean, stddev;
meanStdDev(edges, mean, stddev);
double avgGradient = stddev.val[0] / mean.val[0];
return avgGradient;
}
int main(int argc, char** argv) {
// Load the chessboard image
Mat chessboardImage = imread("chessboard.png");
// Estimate the sharpness of the chessboard image
double sharpness = estimateChessboardSharpness(chessboardImage);
// Display the sharpness value
cout << "Sharpness of the chessboard image: " << sharpness << endl;
return 0;
}
```
在上面的代码中,我们首先加载了一个名为 "chessboard.png" 的棋盘图像,然后调用了 `estimateChessboardSharpness` 函数来评估该图像的清晰度。最后,我们输出了评估结果。
值得注意的是,上面的代码仅仅是一个示例,实际上在使用 `estimateChessboardSharpness` 函数时,需要根据具体的应用需求进行调整,例如可以通过调整 `Canny` 函数的参数来控制边缘检测的结果,从而影响最终评估结果。
阅读全文