线性回归模型 Python代码实现
时间: 2023-11-05 10:57:24 浏览: 106
下面是一个简单的线性回归模型Python代码实现,使用scikit-learn库:
```python
from sklearn.linear_model import LinearRegression
import numpy as np
# 创建示例数据
X = np.array([[1, 2], [2, 4], [3, 6], [4, 8]])
y = np.array([2, 4, 6, 8])
# 创建线性回归模型
model = LinearRegression()
# 拟合模型
model.fit(X, y)
# 预测新数据
new_X = np.array([[5, 10], [6, 12]])
predicted_y = model.predict(new_X)
print(predicted_y)
```
输出:
```
[10. 12.]
```
这个例子中,我们创建了一个包含两个特征的简单数据集,每个特征都是目标变量的两倍。我们使用`LinearRegression`类创建了一个线性回归模型,然后拟合数据并预测新数据。在这个例子中,我们预测了两个新数据点的目标值,它们都是输入特征的两倍。
相关问题
多元非线性回归模型python代码
多元非线性回归模型是一种用于建立多个自变量和一个因变量之间的非线性关系的回归模型。在Python中,可以使用scikit-learn库来实现多元非线性回归模型。面是一个示例代码:
```python
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import make_pipeline
# 创建多元非线性回归模型
def create_nonlinear_regression_model(degree):
model = make_pipeline(PolynomialFeatures(degree), LinearRegression())
return model
# 准备数据
X = [, , , , ] # 自变量
y = [2, 4, 6, 8, 10] # 因变量
# 创建并训练模型
model = create_nonlinear_regression_model(degree=2)
model.fit(X, y)
# 预测新数据
X_new = [, ]
y_pred = model.predict(X_new)
print("预测结果:", y_pred)
```
这段代码使用了`PolynomialFeatures`将自变量进行多项式特征转换,然后使用`LinearRegression`进行线性回归拟合。通过调整`degree`参数可以控制多项式的阶数,从而实现非线性回归。
python线性回归代码_python代码实现回归分析--线性回归
下面是一个简单的Python代码实现线性回归:
```python
import numpy as np
import matplotlib.pyplot as plt
# 生成数据
x = np.array([1, 2, 3, 4, 5])
y = np.array([2, 3, 4, 5, 6])
# 计算斜率和截距
slope, intercept = np.polyfit(x, y, 1)
# 绘制数据和拟合线
plt.scatter(x, y)
plt.plot(x, slope*x + intercept, color='red')
plt.show()
```
这里使用了numpy中的`polyfit`函数来计算斜率和截距,然后使用matplotlib中的`scatter`和`plot`函数来绘制数据散点图和线性拟合线。
阅读全文