通过粒子群算法优化BP神经网络的文献
时间: 2023-09-04 10:11:26 浏览: 113
粒子群算法是一种优化算法,可以用于优化BP神经网络。以下是一些关于通过粒子群算法优化BP神经网络的文献:
1. Wang, J., & Zhang, J. (2009). Particle swarm optimization-based training algorithm for BP neural network. In 2009 International Conference on Measuring Technology and Mechatronics Automation (pp. 516-519). IEEE.
2. Li, H., & Jiang, Y. (2011). Particle swarm optimization-based learning algorithm for BP neural network. In 2011 Third International Conference on Measuring Technology and Mechatronics Automation (pp. 247-250). IEEE.
3. Faramarzi, A., & Heidari, A. A. (2013). A novel hybrid BP-PSO algorithm for neural networks. Neurocomputing, 121, 191-201.
4. Gao, F., & Li, X. (2018). An improved particle swarm optimization and its application in BP neural network. Journal of Intelligent & Fuzzy Systems, 35(1), 1025-1033.
这些文献中,作者们都通过将粒子群算法与BP神经网络相结合,提出了各种不同的训练方法。这些方法可以有效地优化BP神经网络,提高网络的预测精度和泛化能力。同时,通过引入粒子群算法的全局搜索能力,可以避免算法陷入局部极小值,从而提高了算法的优化效率和稳定性。
阅读全文