or report in reports: lines = report.strip().split('\n') print(lines) classifier_name = lines[0].strip() print(classifier_name) data = {} print(data) for line in lines[2:10]: try: category, precision, recall, f1_score, support = line.strip().split() # 处理数据 except ValueError as e: print(f"Error: {e} on line {line}") data[category] = { 'precision': float(precision), 'recall': float(recall), 'f1-score': float(f1_score), 'support': int(support) } reports_dict.append((classifier_name, data))是什么意思

时间: 2024-02-10 08:34:03 浏览: 21
这段代码是用来解析一个字符串类型的报告(report),将其转换成一个包含分类器名称和相关数据的元组(tuple)列表(reports_dict)。具体来说,它首先将报告字符串按行分割,然后提取出第一行作为分类器名称,创建一个空字典作为数据容器。接着,它循环处理后续行,将每行数据解析成类别、准确率、召回率、F1值和支持度等信息,并将其存储在data字典中。最后,它将分类器名称和data字典打包成一个元组,添加到列表reports_dict中。整个过程中,如果遇到无法解析的行,它会打印出错误信息。
相关问题

precision recall f1-score support 0 0.92 0.92 0.92 10762 1 0.85 0.92 0.89 9339 2 0.86 0.45 0.59 1628 micro avg 0.88 0.88 0.88 21729 macro avg 0.88 0.76 0.80 21729 weighted avg 0.88 0.88 0.88 21729 samples avg 0.88 0.88 0.88 21729是reportsreports_dict = [] for report in reports: lines = report.strip().split('\n') classifier_name = lines[0].strip() data = {} for line in lines[2:]: category, precision, recall, f1_score, support = line.strip().split()中for line in lines[2:]: category, precision, recall, f1_score, support = line.strip().split()出现oo many values to unpack (expected 5) on line weighted avg 0.88 0.88 0.88 21729 Error: too many values to unpack (expected 5) on line samples avg 0.88 0.88 0.88 21729怎么修正

可以将代码修改为以下形式,使用 *args 解包任意数量的参数,并将前4个参数赋值给相应的变量,最后一个参数用于支持度的计数,可以忽略。 ``` for line in lines[2:]: category, *scores, support = line.strip().split() precision, recall, f1_score = map(float, scores) ``` 这样就能够正确地解包出前4个参数并将其赋值给相应的变量了。

帮我为下面的代码加上注释:class SimpleDeepForest: def __init__(self, n_layers): self.n_layers = n_layers self.forest_layers = [] def fit(self, X, y): X_train = X for _ in range(self.n_layers): clf = RandomForestClassifier() clf.fit(X_train, y) self.forest_layers.append(clf) X_train = np.concatenate((X_train, clf.predict_proba(X_train)), axis=1) return self def predict(self, X): X_test = X for i in range(self.n_layers): X_test = np.concatenate((X_test, self.forest_layers[i].predict_proba(X_test)), axis=1) return self.forest_layers[-1].predict(X_test[:, :-2]) # 1. 提取序列特征(如:GC-content、序列长度等) def extract_features(fasta_file): features = [] for record in SeqIO.parse(fasta_file, "fasta"): seq = record.seq gc_content = (seq.count("G") + seq.count("C")) / len(seq) seq_len = len(seq) features.append([gc_content, seq_len]) return np.array(features) # 2. 读取相互作用数据并创建数据集 def create_dataset(rna_features, protein_features, label_file): labels = pd.read_csv(label_file, index_col=0) X = [] y = [] for i in range(labels.shape[0]): for j in range(labels.shape[1]): X.append(np.concatenate([rna_features[i], protein_features[j]])) y.append(labels.iloc[i, j]) return np.array(X), np.array(y) # 3. 调用SimpleDeepForest分类器 def optimize_deepforest(X, y): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model = SimpleDeepForest(n_layers=3) model.fit(X_train, y_train) y_pred = model.predict(X_test) print(classification_report(y_test, y_pred)) # 4. 主函数 def main(): rna_fasta = "RNA.fasta" protein_fasta = "pro.fasta" label_file = "label.csv" rna_features = extract_features(rna_fasta) protein_features = extract_features(protein_fasta) X, y = create_dataset(rna_features, protein_features, label_file) optimize_deepforest(X, y) if __name__ == "__main__": main()

# Define a class named 'SimpleDeepForest' class SimpleDeepForest: # Initialize the class with 'n_layers' parameter def __init__(self, n_layers): self.n_layers = n_layers self.forest_layers = [] # Define a method named 'fit' to fit the dataset into the classifier def fit(self, X, y): X_train = X # Use the forest classifier to fit the dataset for 'n_layers' times for _ in range(self.n_layers): clf = RandomForestClassifier() clf.fit(X_train, y) # Append the classifier to the list of forest layers self.forest_layers.append(clf) # Concatenate the training data with the predicted probability of the last layer X_train = np.concatenate((X_train, clf.predict_proba(X_train)), axis=1) # Return the classifier return self # Define a method named 'predict' to make predictions on the test set def predict(self, X): X_test = X # Concatenate the test data with the predicted probability of each layer for i in range(self.n_layers): X_test = np.concatenate((X_test, self.forest_layers[i].predict_proba(X_test)), axis=1) # Return the predictions of the last layer return self.forest_layers[-1].predict(X_test[:, :-2]) # Define a function named 'extract_features' to extract sequence features def extract_features(fasta_file): features = [] # Parse the fasta file to extract sequence features for record in SeqIO.parse(fasta_file, "fasta"): seq = record.seq gc_content = (seq.count("G") + seq.count("C")) / len(seq) seq_len = len(seq) features.append([gc_content, seq_len]) # Return the array of features return np.array(features) # Define a function named 'create_dataset' to create the dataset def create_dataset(rna_features, protein_features, label_file): labels = pd.read_csv(label_file, index_col=0) X = [] y = [] # Create the dataset by concatenating the RNA and protein features for i in range(labels.shape[0]): for j in range(labels.shape[1]): X.append(np.concatenate([rna_features[i], protein_features[j]])) y.append(labels.iloc[i, j]) # Return the array of features and the array of labels return np.array(X), np.array(y) # Define a function named 'optimize_deepforest' to optimize the deep forest classifier def optimize_deepforest(X, y): # Split the dataset into training set and testing set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # Create an instance of the SimpleDeepForest classifier with 3 layers model = SimpleDeepForest(n_layers=3) # Fit the training set into the classifier model.fit(X_train, y_train) # Make predictions on the testing set y_pred = model.predict(X_test) # Print the classification report print(classification_report(y_test, y_pred)) # Define the main function to run the program def main(): rna_fasta = "RNA.fasta" protein_fasta = "pro.fasta" label_file = "label.csv" # Extract the RNA and protein features rna_features = extract_features(rna_fasta) protein_features = extract_features(protein_fasta) # Create the dataset X, y = create_dataset(rna_features, protein_features, label_file) # Optimize the DeepForest classifier optimize_deepforest(X, y) # Check if the program is being run as the main program if __name__ == "__main__": main()

相关推荐

LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) # 读取数据集 dataset_train = datasets.ImageFolder('/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/train', transform=transform) dataset_test = datasets.ImageFolder("/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/valid", transform=transform_test)# 导入数据 train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True,drop_last=True) test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数

为以下代码写注释:class TransformerClassifier(torch.nn.Module): def __init__(self, num_labels): super().__init__() self.bert = BertForSequenceClassification.from_pretrained('bert-base-chinese', num_labels=num_labels) # print(self.bert.config.hidden_size) #768 self.dropout = torch.nn.Dropout(0.1) self.classifier1 = torch.nn.Linear(640, 256) self.classifier2 = torch.nn.Linear(256, num_labels) self.regress1 = torch.nn.Linear(640, 256) self.regress2 = torch.nn.Linear(256, 2) self.regress3 = torch.nn.Linear(640, 256) self.regress4 = torch.nn.Linear(256, 2) # self.regress3 = torch.nn.Linear(64, 1) # self.regress3 = torch.nn.Linear(640, 256) # self.regress4 = torch.nn.Linear(256, 1) # self.soft1 = torch.nn.Softmax(dim=1) def forward(self, input_ids, attention_mask, token_type_ids): # outputs = self.bert(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) # pooled_output = outputs.logits # # pooled_output = self.dropout(pooled_output) # # logits = self.classifier(pooled_output) outputs = self.bert(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) logits = outputs.logits clas = F.relu(self.classifier1(logits)) clas = self.classifier2(clas) death = F.relu(self.regress1(logits)) # xingqi = F.relu(self.regress2(xingqi)) death = self.regress2(death) life = F.relu(self.regress3(logits)) # xingqi = F.relu(self.regress2(xingqi)) life = self.regress4(life) # fakuan = F.relu(self.regress3(logits)) # fakuan = self.regress4(fakuan) # print(logits.shape) # logits = self.soft1(logits) # print(logits) # print(logits.shape) return clas,death,life

最新推荐

recommend-type

基于Selenium的Java爬虫实战(内含谷歌浏览器Chrom和Chromedriver版本116.0.5808.0)

资源包括: 1.Java爬虫实战代码 2.selenium学习笔记 3.代码演示视频 4.谷歌浏览器chrom116.0.5808.0 chrome-linux64.zip chrome-mac-arm64.zip chrome-mac-x64.zip chrome-win32.zip chrome-win64.zip 5.谷歌浏览器驱动器Chromedriver116.0.5808.0 chromedriver-linux64.zip chromedriver-mac-arm64.zip chromedriver-mac-x64.zip chromedriver-win32.zip chromedriver-win64.zip 特别说明:Chrome 为测试版(不会自动更新) 仅适用于自动测试。若要进行常规浏览,请使用可自动更新的标准版 Chrome。)
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB正态分布协方差分析:揭示正态分布变量之间的协方差

![MATLAB正态分布协方差分析:揭示正态分布变量之间的协方差](https://site.cdn.mengte.online/official/2021/11/20211128213137293.png) # 1. 正态分布概述 正态分布,又称高斯分布,是统计学中最重要的连续概率分布之一。它广泛应用于自然科学、社会科学和工程领域。 正态分布的概率密度函数为: ``` f(x) = (1 / (σ√(2π))) * exp(-(x - μ)² / (2σ²)) ``` 其中: - μ:正态分布的均值 - σ:正态分布的标准差 - π:圆周率 正态分布具有以下特性: - 对称性:
recommend-type

我正在开发一款个人碳足迹计算app,如何撰写其需求分析文档,请给我一个范例

为了更全面、清晰地定义个人碳足迹计算app的需求,需求分析文档应该包含以下内容: 1.项目简介:对该app项目的概述及目标进行说明。 2.用户分析:包括目标用户群、用户需求、行为等。 3.功能需求:对app的基本功能进行定义,如用户登录、数据录入、数据统计等。 4.非功能需求:对使用app的性能和质量等进行定义,如界面设计、数据安全、可扩展性等。 5.运行环境:包括app的开发环境和使用环境。 下面是一个范例: 需求分析文档 1. 项目简介 该app项目旨在为用户提供一款方便、易用、可定制的个人碳足迹计算平台,以促进环保和可持续性发展。 2. 用户分析 目标用户群:全球关
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB正态分布相关性分析:探索正态分布变量之间的关联

![MATLAB正态分布相关性分析:探索正态分布变量之间的关联](https://img-blog.csdnimg.cn/bd5a45b8a6e94357b7af2409fa3131ab.png) # 1. MATLAB中正态分布的理论基础 正态分布,又称高斯分布,是一种常见的概率分布,其概率密度函数为: ``` f(x) = (1 / (σ√(2π))) * e^(-(x-μ)² / (2σ²)) ``` 其中,μ表示正态分布的均值,σ表示标准差。正态分布具有以下特点: - **对称性:**正态分布的概率密度函数关于均值μ对称。 - **钟形曲线:**正态分布的概率密度函数呈钟形曲线
recommend-type

我现在需要学习基于opencv和mediapipe并且是python的手势识别,我该如何系统的学习呢

你可以先了解一下opencv和mediapipe的基本使用方法和常见功能,然后学习手势识别的算法和方法。具体学习的过程可以包括以下步骤: 1. 学习opencv的基本操作,例如读取、保存、处理图像的方法,以及如何进行图像的降噪、二值化、边缘检测等操作。 2. 学习mediapipe的使用方法,了解如何使用它进行姿势估计和手部检测。 3. 学习手势识别的算法和方法,了解如何识别手部的姿势和手势动作,并进行分类和识别。 4. 进行实践,尝试编写基于opencv和mediapipe的手势识别代码,对不同类型的手势进行识别和分类。 5. 继续学习和研究,扩展自己的知识和技能,探索更深入和复杂
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。