or report in reports: lines = report.strip().split('\n') print(lines) classifier_name = lines[0].strip() print(classifier_name) data = {} print(data) for line in lines[2:10]: try: category, precision, recall, f1_score, support = line.strip().split() # 处理数据 except ValueError as e: print(f"Error: {e} on line {line}") data[category] = { 'precision': float(precision), 'recall': float(recall), 'f1-score': float(f1_score), 'support': int(support) } reports_dict.append((classifier_name, data))是什么意思
时间: 2024-02-10 18:34:03 浏览: 110
这段代码是用来解析一个字符串类型的报告(report),将其转换成一个包含分类器名称和相关数据的元组(tuple)列表(reports_dict)。具体来说,它首先将报告字符串按行分割,然后提取出第一行作为分类器名称,创建一个空字典作为数据容器。接着,它循环处理后续行,将每行数据解析成类别、准确率、召回率、F1值和支持度等信息,并将其存储在data字典中。最后,它将分类器名称和data字典打包成一个元组,添加到列表reports_dict中。整个过程中,如果遇到无法解析的行,它会打印出错误信息。
相关问题
precision recall f1-score support 0 0.92 0.92 0.92 10762 1 0.85 0.92 0.89 9339 2 0.86 0.45 0.59 1628 micro avg 0.88 0.88 0.88 21729 macro avg 0.88 0.76 0.80 21729 weighted avg 0.88 0.88 0.88 21729 samples avg 0.88 0.88 0.88 21729是reportsreports_dict = [] for report in reports: lines = report.strip().split('\n') classifier_name = lines[0].strip() data = {} for line in lines[2:]: category, precision, recall, f1_score, support = line.strip().split()中for line in lines[2:]: category, precision, recall, f1_score, support = line.strip().split()出现oo many values to unpack (expected 5) on line weighted avg 0.88 0.88 0.88 21729 Error: too many values to unpack (expected 5) on line samples avg 0.88 0.88 0.88 21729怎么修正
可以将代码修改为以下形式,使用 *args 解包任意数量的参数,并将前4个参数赋值给相应的变量,最后一个参数用于支持度的计数,可以忽略。
```
for line in lines[2:]:
category, *scores, support = line.strip().split()
precision, recall, f1_score = map(float, scores)
```
这样就能够正确地解包出前4个参数并将其赋值给相应的变量了。
帮我为下面的代码加上注释:class SimpleDeepForest: def __init__(self, n_layers): self.n_layers = n_layers self.forest_layers = [] def fit(self, X, y): X_train = X for _ in range(self.n_layers): clf = RandomForestClassifier() clf.fit(X_train, y) self.forest_layers.append(clf) X_train = np.concatenate((X_train, clf.predict_proba(X_train)), axis=1) return self def predict(self, X): X_test = X for i in range(self.n_layers): X_test = np.concatenate((X_test, self.forest_layers[i].predict_proba(X_test)), axis=1) return self.forest_layers[-1].predict(X_test[:, :-2]) # 1. 提取序列特征(如:GC-content、序列长度等) def extract_features(fasta_file): features = [] for record in SeqIO.parse(fasta_file, "fasta"): seq = record.seq gc_content = (seq.count("G") + seq.count("C")) / len(seq) seq_len = len(seq) features.append([gc_content, seq_len]) return np.array(features) # 2. 读取相互作用数据并创建数据集 def create_dataset(rna_features, protein_features, label_file): labels = pd.read_csv(label_file, index_col=0) X = [] y = [] for i in range(labels.shape[0]): for j in range(labels.shape[1]): X.append(np.concatenate([rna_features[i], protein_features[j]])) y.append(labels.iloc[i, j]) return np.array(X), np.array(y) # 3. 调用SimpleDeepForest分类器 def optimize_deepforest(X, y): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model = SimpleDeepForest(n_layers=3) model.fit(X_train, y_train) y_pred = model.predict(X_test) print(classification_report(y_test, y_pred)) # 4. 主函数 def main(): rna_fasta = "RNA.fasta" protein_fasta = "pro.fasta" label_file = "label.csv" rna_features = extract_features(rna_fasta) protein_features = extract_features(protein_fasta) X, y = create_dataset(rna_features, protein_features, label_file) optimize_deepforest(X, y) if __name__ == "__main__": main()
# Define a class named 'SimpleDeepForest'
class SimpleDeepForest:
# Initialize the class with 'n_layers' parameter
def __init__(self, n_layers):
self.n_layers = n_layers
self.forest_layers = []
# Define a method named 'fit' to fit the dataset into the classifier
def fit(self, X, y):
X_train = X
# Use the forest classifier to fit the dataset for 'n_layers' times
for _ in range(self.n_layers):
clf = RandomForestClassifier()
clf.fit(X_train, y)
# Append the classifier to the list of forest layers
self.forest_layers.append(clf)
# Concatenate the training data with the predicted probability of the last layer
X_train = np.concatenate((X_train, clf.predict_proba(X_train)), axis=1)
# Return the classifier
return self
# Define a method named 'predict' to make predictions on the test set
def predict(self, X):
X_test = X
# Concatenate the test data with the predicted probability of each layer
for i in range(self.n_layers):
X_test = np.concatenate((X_test, self.forest_layers[i].predict_proba(X_test)), axis=1)
# Return the predictions of the last layer
return self.forest_layers[-1].predict(X_test[:, :-2])
# Define a function named 'extract_features' to extract sequence features
def extract_features(fasta_file):
features = []
# Parse the fasta file to extract sequence features
for record in SeqIO.parse(fasta_file, "fasta"):
seq = record.seq
gc_content = (seq.count("G") + seq.count("C")) / len(seq)
seq_len = len(seq)
features.append([gc_content, seq_len])
# Return the array of features
return np.array(features)
# Define a function named 'create_dataset' to create the dataset
def create_dataset(rna_features, protein_features, label_file):
labels = pd.read_csv(label_file, index_col=0)
X = []
y = []
# Create the dataset by concatenating the RNA and protein features
for i in range(labels.shape[0]):
for j in range(labels.shape[1]):
X.append(np.concatenate([rna_features[i], protein_features[j]]))
y.append(labels.iloc[i, j])
# Return the array of features and the array of labels
return np.array(X), np.array(y)
# Define a function named 'optimize_deepforest' to optimize the deep forest classifier
def optimize_deepforest(X, y):
# Split the dataset into training set and testing set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# Create an instance of the SimpleDeepForest classifier with 3 layers
model = SimpleDeepForest(n_layers=3)
# Fit the training set into the classifier
model.fit(X_train, y_train)
# Make predictions on the testing set
y_pred = model.predict(X_test)
# Print the classification report
print(classification_report(y_test, y_pred))
# Define the main function to run the program
def main():
rna_fasta = "RNA.fasta"
protein_fasta = "pro.fasta"
label_file = "label.csv"
# Extract the RNA and protein features
rna_features = extract_features(rna_fasta)
protein_features = extract_features(protein_fasta)
# Create the dataset
X, y = create_dataset(rna_features, protein_features, label_file)
# Optimize the DeepForest classifier
optimize_deepforest(X, y)
# Check if the program is being run as the main program
if __name__ == "__main__":
main()
阅读全文