2.5 协同过滤算法
时间: 2024-05-01 13:14:41 浏览: 179
协同过滤算法
5星 · 资源好评率100%
协同过滤算法是一种常用的推荐算法,它基于用户行为数据或者物品属性数据,通过分析用户之间的相似性或者物品之间的相似性,来进行个性化的推荐。具体来说,协同过滤算法有两种主要的实现方式:基于用户的协同过滤和基于物品的协同过滤。
基于用户的协同过滤算法首先计算用户之间的相似度,然后根据相似度来预测目标用户对未评价物品的喜好程度。常用的相似度计算方法有余弦相似度和皮尔逊相关系数。该算法的核心思想是“与我兴趣相似的人也喜欢这个物品”。
基于物品的协同过滤算法则是先计算物品之间的相似度,然后根据相似度来预测目标用户对未评价物品的喜好程度。该算法的核心思想是“喜欢这个物品的人也喜欢那个物品”。
协同过滤算法的优点是可以根据用户的历史行为进行推荐,不需要事先对物品进行特征提取或者对用户进行特征建模。然而,该算法也存在一些问题,比如数据稀疏性、冷启动问题和算法的可扩展性等。
阅读全文