Hudi on flink

时间: 2024-01-26 12:14:24 浏览: 144
Hudi on Flink是一种将Hudi与Flink结合使用的解决方案,它提供了一种实时化宽表数据的方法。Hudi是一种用于增量数据处理和实时数据湖建设的开源框架,而Flink是一种用于流式数据处理的开源框架。 Hudi on Flink的主要特点包括: 1. 支持批处理和流处理模式:Hudi on Flink可以同时支持批处理和流处理模式,使得用户可以根据自己的需求选择合适的处理方式。 2. 支持Flink SQL API:Hudi on Flink提供了对Flink SQL API的支持,使得用户可以使用SQL语句来操作和查询Hudi表。 3. 高效的索引方案:Hudi on Flink通过使用状态来实现高效的索引方案,从而提高了查询和更新的性能。 4. 支持UPDATE/DELETE操作:Hudi on Flink具有优秀的设计,可以支持更新和删除操作,使得数据的变更更加灵活和高效。 5. 适用于CDC数据入湖:由于Hudi on Flink的优秀设计和性能,它成为了当前最有潜力的CDC数据入湖方案。 总结起来,Hudi on Flink是一种将Hudi和Flink结合使用的解决方案,它可以实现宽表数据的实时化处理,并提供了高效的索引方案和支持UPDATE/DELETE操作的能力。
相关问题

如何集成flink和hudi

Apache Flink 和 Apache Hudi 都是 Apache 软件基金会的开源项目,它们都是处理大规模数据的工具。Apache Flink 是一个分布式流处理引擎,而 Apache Hudi 是一个分布式数据湖,可以实现数据仓库中数据的更新、删除和插入。 要集成 Apache Flink 和 Apache Hudi,可以按照以下步骤进行操作: 1.下载 Apache Flink 和 Apache Hudi,将它们解压到本地文件夹。 2.启动 Apache Flink 集群。可以使用以下命令启动: ``` ./bin/start-cluster.sh ``` 3.启动 Apache Hudi。可以使用以下命令启动: ``` ./bin/start-hoodie.sh ``` 4.在代码中使用 Apache Flink 和 Apache Hudi。可以使用以下代码示例: ```java import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.streaming.api.functions.source.SourceFunction; import org.apache.hudi.client.HoodieWriteClient; import org.apache.hudi.client.WriteStatus; import org.apache.hudi.client.common.HoodieFlinkEngineContext; import org.apache.hudi.client.common.HoodieSparkEngineContext; import org.apache.hudi.common.model.HoodieTableType; import org.apache.hudi.common.util.CommitUtils; import org.apache.hudi.common.util.ReflectionUtils; import org.apache.hudi.common.util.TypedProperties; import org.apache.hudi.common.util.ValidationUtils; import org.apache.hudi.flink.HoodieFlinkWriteConfiguration; import org.apache.hudi.flink.HoodieFlinkWriter; import org.apache.hudi.flink.HoodieFlinkWriterFactory; import org.apache.hudi.flink.source.StreamReadOperator; import org.apache.hudi.flink.utils.CollectSink; import org.apache.hudi.flink.utils.TestConfigurations; import org.apache.hudi.flink.utils.TestData; import org.apache.hudi.flink.utils.TestDataGenerator; import org.apache.hudi.streamer.FlinkStreamer; import org.apache.kafka.clients.consumer.ConsumerRecord; import java.util.List; import java.util.Properties; public class FlinkHudiIntegrationExample { public static void main(String[] args) throws Exception { // set up the streaming execution environment final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setParallelism(1); // create a Kafka source SourceFunction<ConsumerRecord<String, String>> kafkaSource = KafkaSource.<String, String>builder() .setBootstrapServers("localhost:9092") .setTopics("test_topic") .build(); // create a Hudi sink TypedProperties properties = new TypedProperties(); properties.setProperty("hoodie.datasource.write.recordkey.field", "id"); properties.setProperty("hoodie.datasource.write.partitionpath.field", "ts"); properties.setProperty("hoodie.table.name", "test_table"); properties.setProperty("hoodie.table.type", HoodieTableType.COPY_ON_WRITE.name()); properties.setProperty("hoodie.datasource.write.keygenerator.class", ReflectionUtils.loadClass( "org.apache.hudi.keygen.SimpleKeyGenerator").getName()); properties.setProperty("hoodie.datasource.write.payload.class", ReflectionUtils.loadClass( "org.apache.hudi.example.data.SimpleJsonPayload").getName()); properties.setProperty("hoodie.datasource.write.hive_style_partitioning", "true"); HoodieFlinkWriteConfiguration writeConfig = HoodieFlinkWriteConfiguration.newBuilder() .withProperties(properties) .build(); HoodieFlinkWriter<ConsumerRecord<String, String>> hudiSink = HoodieFlinkWriterFactory.<ConsumerRecord<String, String>>newInstance() .writeConfig(writeConfig) .withEngineContext(new HoodieFlinkEngineContext(env)) .build(); // add the Kafka source and Hudi sink to the pipeline env.addSource(kafkaSource) .map(new StreamReadOperator()) .addSink(hudiSink); // execute the pipeline env.execute("Flink Hudi Integration Example"); } } ``` 这个代码示例展示了如何在 Apache Flink 中使用 Apache Hudi。它使用 Kafka 作为数据源,将数据写入到 Hudi 表中。 以上就是集成 Apache Flink 和 Apache Hudi 的步骤。需要注意的是,集成过程中可能会遇到一些问题,需要根据具体情况进行解决。

flink中创建hudi表

Apache Flink 是一个开源的流处理框架,用于处理实时数据流。Apache Hudi(Hadoop Upserts Deletes and Incremental Processing)是一个开源存储库,它允许以增量方式插入、删除和更新存储在Hadoop兼容存储系统中的大规模数据集。 在Flink中创建Hudi表通常涉及以下步骤: 1. 配置Hudi数据源连接器:Flink与Hudi集成通常需要配置相应的Hudi数据源连接器,它允许Flink作业与Hudi表进行交互。 2. 定义表模式:在创建Hudi表之前,需要定义表的模式,包括列名、数据类型等信息。 3. 指定表参数:设置Hudi表的参数,如表类型(COPY_ON_WRITE或MERGE_ON_READ),存储路径,分区键等。 4. 创建表:使用Flink的SQL API或者DataStream API创建Hudi表。如果是SQL API,则使用`CREATE TABLE`语句,并指定使用Hudi连接器。 下面是一个创建Hudi表的基本示例代码(使用的是Flink的DataStream API): ```java StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 配置Hudi连接器选项 Properties properties = new Properties(); properties.setProperty("hoodie.datasource.write.storage.type", "COPY_ON_WRITE"); // 或者 "MERGE_ON_READ" properties.setProperty("hoodie.datasource.write.preCombineField", "ts"); // 如果需要,设置用于合并的字段 properties.setProperty("hoodie.datasource.write.recordkey.field", "id"); // 设置记录键字段 properties.setProperty("hoodie.datasource.write.partitionpath.field", "partition_key"); // 设置分区键字段 properties.setProperty("hoodie.datasource.write.table.name", "hudi_table"); // 设置Hudi表名 properties.setProperty("hoodie.base.path", "hdfs://path/to/hudi/table"); // 设置Hudi表的基础存储路径 // 创建数据源 FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>( "hudi_topic", // Kafka主题 new SimpleStringSchema(), // 序列化Schema properties); // 配置属性 DataStream<String> stream = env.addSource(consumer); // TODO: 将流中的数据转换为适当的格式,并执行数据写入操作到Hudi表中 env.execute("Flink Hudi Example"); ``` 注意:具体代码会根据使用的Flink版本、Hudi版本和具体需求有所不同。上述代码只作为一个简单示例。
阅读全文

相关推荐

最新推荐

recommend-type

Flink +hudi+presto 流程图.docx

《Flink + Hudi + Presto:实时大数据处理与分析的综合应用》 在现代大数据处理领域,Apache Flink、Hudi和Presto是三款重要的开源工具,它们各自承担着不同的职责,但又能完美地协同工作,构建出高效、实时的数据...
recommend-type

python小爬虫.zip

python小爬虫
recommend-type

前端协作项目:发布猜图游戏功能与待修复事项

资源摘要信息:"People-peephole-frontend是一个面向前端开发者的仓库,包含了一个由Rails和IOS团队在2015年夏季亚特兰大Iron Yard协作完成的项目。该仓库中的项目是一个具有特定功能的应用,允许用户通过iPhone或Web应用发布图像,并通过多项选择的方式让用户猜测图像是什么。该项目提供了一个互动性的平台,使用户能够通过猜测来获取分数,正确答案将提供积分,并防止用户对同一帖子重复提交答案。 当前项目存在一些待修复的错误,主要包括: 1. 答案提交功能存在问题,所有答案提交操作均返回布尔值true,表明可能存在逻辑错误或前端与后端的数据交互问题。 2. 猜测功能无法正常工作,这可能涉及到游戏逻辑、数据处理或是用户界面的交互问题。 3. 需要添加计分板功能,以展示用户的得分情况,增强游戏的激励机制。 4. 删除帖子功能存在损坏,需要修复以保证应用的正常运行。 5. 项目的样式过时,需要更新以反映跨所有平台的流程,提高用户体验。 技术栈和依赖项方面,该项目需要Node.js环境和npm包管理器进行依赖安装,因为项目中使用了大量Node软件包。此外,Bower也是一个重要的依赖项,需要通过bower install命令安装。Font-Awesome和Materialize是该项目用到的前端资源,它们提供了图标和界面组件,增强了项目的视觉效果和用户交互体验。 由于本仓库的主要内容是前端项目,因此JavaScript知识在其中扮演着重要角色。开发者需要掌握JavaScript的基础知识,以及可能涉及到的任何相关库或框架,比如用于开发Web应用的AngularJS、React.js或Vue.js。同时,对于iOS开发,可能还会涉及到Swift或Objective-C等编程语言,以及相应的开发工具Xcode。对于Rails,开发者则需要熟悉Ruby编程语言以及Rails框架的相关知识。 开发流程中可能会使用的其他工具包括: - Git:用于版本控制和代码管理。 - HTML/CSS:用于构建网页结构和样式。 - Webpack或Gulp:用于项目构建和优化流程。 - Babel:用于JavaScript代码的兼容性处理。 - Linting工具:如ESLint,用于代码质量检查和维护代码风格一致性。 总结来看,People-peephole-frontend项目不仅涉及到了跨平台协作的经验分享,还提供了前端开发的学习和实践机会,尤其在交互设计、前端工程化、依赖管理及样式设计等方面。开发者可以通过参与该项目的修复和完善工作,提高自身技能并积累宝贵的项目经验。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【高斯信道信号编码优化】:4大方法优化Chirp信号编码过程

![高斯信道下的chirp信号解调](https://img-blog.csdnimg.cn/d37646d14e4e4b51b01e617b59167c74.png) # 1. 高斯信道与Chirp信号编码基础 ## 简介 在现代通信领域,信息的传递无处不在,而保障信息传递的清晰与高效是通信技术的核心挑战之一。高斯信道作为通信系统中最常见和基础的模型,为我们理解和优化信号传输提供了重要的理论支持。Chirp信号,以其独特的频谱扩展特性,在无线通信、雷达和声纳系统中发挥着越来越重要的作用。本章将介绍高斯信道的特性以及Chirp信号的基础知识,为读者搭建起后续章节深入探讨优化方法的理论基础。
recommend-type

对给定图,实现图的深度优先遍历和广度优先遍历。以邻接表或邻接矩阵为存储结构,实现连通无向图的深度优先和广度优先遍历。以用户指定的结点为起点,分别输出每种遍历下的结点访问序列,并调试算法。使用C语言

在C语言中,我们可以使用邻接表或邻接矩阵来存储图的数据结构。这里我将简单介绍如何实现深度优先搜索(DFS)和广度优先搜索(BFS): **使用邻接表实现:** ```c #include <stdio.h> #include <stdlib.h> typedef struct Node { int val; struct Node* next; } Node; // 创建邻接列表表示图 Node* createAdjacencyList(int numNodes) { // 初始化节点数组 Node** adjList = malloc(sizeof(No
recommend-type

Spring框架REST服务开发实践指南

资源摘要信息: "在本教程中,我们将详细介绍如何使用Spring框架来构建RESTful Web服务,提供对Java开发人员的基础知识和学习参考。" 一、Spring框架基础知识 Spring是一个开源的Java/Java EE全功能栈(full-stack)应用程序框架和 inversion of control(IoC)容器。它主要分为以下几个核心模块: - 核心容器:包括Core、Beans、Context和Expression Language模块。 - 数据访问/集成:涵盖JDBC、ORM、OXM、JMS和Transaction模块。 - Web模块:提供构建Web应用程序的Spring MVC框架。 - AOP和Aspects:提供面向切面编程的实现,允许定义方法拦截器和切点来清晰地分离功能。 - 消息:提供对消息传递的支持。 - 测试:支持使用JUnit或TestNG对Spring组件进行测试。 二、构建RESTful Web服务 RESTful Web服务是一种使用HTTP和REST原则来设计网络服务的方法。Spring通过Spring MVC模块提供对RESTful服务的构建支持。以下是一些关键知识点: - 控制器(Controller):处理用户请求并返回响应的组件。 - REST控制器:特殊的控制器,用于创建RESTful服务,可以返回多种格式的数据(如JSON、XML等)。 - 资源(Resource):代表网络中的数据对象,可以通过URI寻址。 - @RestController注解:一个方便的注解,结合@Controller注解使用,将类标记为控制器,并自动将返回的响应体绑定到HTTP响应体中。 - @RequestMapping注解:用于映射Web请求到特定处理器的方法。 - HTTP动词(GET、POST、PUT、DELETE等):在RESTful服务中用于执行CRUD(创建、读取、更新、删除)操作。 三、使用Spring构建REST服务 构建REST服务需要对Spring框架有深入的理解,以及熟悉MVC设计模式和HTTP协议。以下是一些关键步骤: 1. 创建Spring Boot项目:使用Spring Initializr或相关构建工具(如Maven或Gradle)初始化项目。 2. 配置Spring MVC:在Spring Boot应用中通常不需要手动配置,但可以进行自定义。 3. 创建实体类和资源控制器:实体类映射数据库中的数据,资源控制器处理与实体相关的请求。 4. 使用Spring Data JPA或MyBatis进行数据持久化:JPA是一个Java持久化API,而MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。 5. 应用切面编程(AOP):使用@Aspect注解定义切面,通过切点表达式实现方法的拦截。 6. 异常处理:使用@ControllerAdvice注解创建全局异常处理器。 7. 单元测试和集成测试:使用Spring Test模块进行控制器的测试。 四、学习参考 - 国际奥委会:可能是错误的提及,对于本教程没有相关性。 - AOP:面向切面编程,是Spring的核心功能之一。 - MVC:模型-视图-控制器设计模式,是构建Web应用的常见架构。 - 道:在这里可能指学习之道,或者是学习Spring的原则和最佳实践。 - JDBC:Java数据库连接,是Java EE的一部分,用于在Java代码中连接和操作数据库。 - Hibernate:一个对象关系映射(ORM)框架,简化了数据库访问代码。 - MyBatis:一个半自动化的ORM框架,它提供了更细致的SQL操作方式。 五、结束语 以上内容为《learnSpring:学习春天》的核心知识点,涵盖了从Spring框架的基础知识、RESTful Web服务的构建、使用Spring开发REST服务的方法,以及与学习Spring相关的技术栈介绍。对于想要深入学习Java开发,特别是RESTful服务开发的开发者来说,这是一份非常宝贵的资源。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【Chirp信号检测算法精解】:掌握高效检测Chirp信号的5大关键步骤

![高斯信道下的chirp信号解调](https://img-blog.csdnimg.cn/1fb88c1f540143859ce0683d26104234.png) # 1. Chirp信号检测算法概述 Chirp信号检测是现代信号处理中的一个关键环节,广泛应用于雷达、声纳、无线通信等领域。Chirp信号,即线性调频连续波信号,因其具有良好的时频特性、抗噪声干扰能力强而备受青睐。本章将对Chirp信号检测算法做一个简要介绍,概述其核心原理与应用场景,为后续深入探讨基础理论和关键技术打下基础。 ## 1.1 Chirp信号检测的应用背景 Chirp信号检测算法的开发与优化,源于对信号在
recommend-type

如何修改此代码使其支持模糊匹配?

要在C语言中实现模糊匹配,你可以考虑使用通配符或者其他模式匹配库,比如`fnmatch`函数。这里以`fnmatch`为例,它是用于做简单模式匹配的标准库函数。如果你想允许用户输入的部分字符串作为查询条件,可以稍作修改如下: ```c #include <stdio.h> #include <string.h> #include <fnmatch.h> void fuzzy_search(const char *pattern, const char *filename) { FILE *file = fopen(filename, "r"); if (file == N