计算出打开窗口的左上角坐标。

时间: 2023-06-20 22:05:57 浏览: 47
要计算出打开窗口的左上角坐标,需要知道以下信息: - 屏幕的分辨率 - 窗口的大小 假设屏幕分辨率为1920x1080,窗口大小为800x600,那么打开窗口的左上角坐标可以这样计算: - x坐标:(1920 - 800) / 2 = 560 - y坐标:(1080 - 600) / 2 = 240 因此,打开窗口的左上角坐标为(560, 240)。
相关问题

easyx打开窗口时在屏幕左下角怎么办

如果在使用EasyX打开窗口时在屏幕左下角,可能是窗口的初始位置设置不正确导致的。可以通过如下两种方式进行修改: 1. 在调用 `initgraph` 函数之前,使用 `HWND` 类型的变量和 `GetDesktopWindow()` 函数获取桌面窗口句柄,然后使用 `GetClientRect` 函数获取桌面窗口客户区的大小并计算出窗口左上角的坐标,最后在 `initgraph` 函数的第三个参数中指定窗口的初始位置。 示例代码如下: ```c++ #include <graphics.h> #include <Windows.h> int main() { HWND hwnd = GetDesktopWindow(); RECT rect; GetClientRect(hwnd, &rect); int width = rect.right - rect.left; int height = rect.bottom - rect.top; initgraph(width, height, SHOWCONSOLE); // 窗口左上角的坐标为 (0, 0) // ... closegraph(); return 0; } ``` 2. 在调用 `initgraph` 函数之后,使用 `HWND` 类型的变量和 `GetHwnd` 函数获取窗口句柄,然后使用 `SetWindowPos` 函数将窗口移动到屏幕的合适位置。 示例代码如下: ```c++ #include <graphics.h> #include <Windows.h> int main() { initgraph(640, 480, SHOWCONSOLE); // ... HWND hwnd = GetHWnd(); RECT rect; GetClientRect(hwnd, &rect); int width = rect.right - rect.left; int height = rect.bottom - rect.top; SetWindowPos(hwnd, NULL, 100, 100, width, height, SWP_SHOWWINDOW); // ... closegraph(); return 0; } ``` 以上两种方式都可以将窗口移动到屏幕的合适位置,具体实现可以根据自己的需要选择。

1.编写代码实现以下绘图: (1)一个窗口: 1)窗口标题是“MyfirstJFrame”,调用方法:setTitle()。 2)窗口初始大小800x500,调用方法:setSize()。 3)使用CJLU的logo(CJLU.gif)(双击压缩包图标打开后解压到代码目录)为窗 口的图标:调用方法:setIconImage(); (2)在上面的程序基础上继续,绘制图形 以下提示假设g2为Graphics2D对象。 1)绘制文字【粉红色(Color.PINK),粗体(Font.BOLD),字体为”Arial”,大小为36,坐 标位置为(200,50)】使用g2.setPaint()设置颜色,使用g2.setFont()设置字体,使用g2.drawString() 绘制字符串。 2)绘制椭圆并填充【绿色(Color.GREEN),其外接矩形左上角坐标(100,100),大小为 (600,300)】创建Ellipse2D对象,使用g2.setPaint()设置颜色,使用g2.draw()绘制Ellipse2D对 象,使用g2.fill()填充Ellipse2D对象。 3)绘制矩形并填充【蓝色(Color.GREEN),左上角坐标(150,200),大小为(200,100)】 与上一小题类似,只是换成了Rectangle2D对象。 4)使用绘制矩形的两条对角线【黑色(Color.BLACK),两条对角线分开画,每一条起点 和终点坐标根据矩形位置和大小计算】。创建Line2D对象,使用g2.setPaint()设置颜色,使 用g2.draw()绘制。 5)绘制圆形【红色(Color.RED),其外接矩形左上角坐标(450,150),大小为(200,200)】 与2)中的椭圆类似,只是把椭圆Ellipse2D对象的宽和高设置为相同,就是圆了。 6)每隔π/4弧度,绘制圆形中的半径线。【黑色(Color.BLACK),每一条半径起点为圆 心(550,250),半径为100。半径终点的坐标为(圆心x坐标+半径*cos(θ),圆心y坐标+半径 *sin(θ)),其中θ为该条半径转过的弧度】。可以用for(弧度......){创建半径线段Line2D对象; 调用g2.draw()绘制半径;}来完成。

很抱歉,我无法编写代码。但我可以给你提供代码实现的思路,你可以参考以下代码: ```java import java.awt.Color; import java.awt.Font; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.geom.Ellipse2D; import java.awt.geom.Line2D; import java.awt.geom.Rectangle2D; import javax.swing.ImageIcon; import javax.swing.JFrame; import javax.swing.JPanel; public class MyfirstJFrame extends JFrame { public MyfirstJFrame() { setTitle("MyfirstJFrame"); // 设置窗口标题 setSize(800, 500); // 设置窗口大小 ImageIcon icon = new ImageIcon("CJLU.gif"); // 设置窗口图标 Image image = icon.getImage(); setIconImage(image); JPanel panel = new MyPanel(); // 创建绘图面板 add(panel); // 添加面板到窗口 } public static void main(String[] args) { MyfirstJFrame frame = new MyfirstJFrame(); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); frame.setVisible(true); } } class MyPanel extends JPanel { @Override public void paintComponent(Graphics g) { super.paintComponent(g); Graphics2D g2 = (Graphics2D) g; // 绘制粉红色文字 g2.setPaint(Color.PINK); Font font = new Font("Arial", Font.BOLD, 36); g2.setFont(font); g2.drawString("Hello, World!", 200, 50); // 绘制绿色椭圆并填充 g2.setPaint(Color.GREEN); Ellipse2D ellipse = new Ellipse2D.Double(100, 100, 600, 300); g2.draw(ellipse); g2.fill(ellipse); // 绘制蓝色矩形并填充 g2.setPaint(Color.BLUE); Rectangle2D rect = new Rectangle2D.Double(150, 200, 200, 100); g2.draw(rect); g2.fill(rect); // 绘制黑色矩形对角线 g2.setPaint(Color.BLACK); double x1 = rect.getX(); double y1 = rect.getY(); double x2 = rect.getX() + rect.getWidth(); double y2 = rect.getY() + rect.getHeight(); Line2D line1 = new Line2D.Double(x1, y1, x2, y2); Line2D line2 = new Line2D.Double(x1, y2, x2, y1); g2.draw(line1); g2.draw(line2); // 绘制红色圆形 g2.setPaint(Color.RED); Ellipse2D circle = new Ellipse2D.Double(450, 150, 200, 200); g2.draw(circle); g2.fill(circle); // 绘制黑色圆形半径线 g2.setPaint(Color.BLACK); double centerX = circle.getCenterX(); double centerY = circle.getCenterY(); double radius = circle.getWidth() / 2; for (double theta = 0; theta <= Math.PI * 2; theta += Math.PI / 4) { double x = centerX + radius * Math.cos(theta); double y = centerY + radius * Math.sin(theta); Line2D radiusLine = new Line2D.Double(centerX, centerY, x, y); g2.draw(radiusLine); } } } ```

相关推荐

最新推荐

recommend-type

python对视频画框标记后保存的方法

其参数包括:图像、矩形左上角坐标、右下角坐标以及边框颜色和宽度。 ```python #cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) ``` 处理后的帧会被写入到输出视频文件中,`cv2.Video...
recommend-type

操作系统的开发是一项复杂而深奥的工作,涉及到计算机科学中的许多核心概念和技术 下面是操作系统开发的一些关键方面和步骤: ###

操作系统的开发是一项复杂而深奥的工作,涉及到计算机科学中的许多核心概念和技术。下面是操作系统开发的一些关键方面和步骤: ### 1. **理解操作系统的基本概念** 操作系统是管理计算机硬件和软件资源的系统软件。它提供了用户和应用程序与计算机硬件之间的接口,包括处理器管理、内存管理、文件系统、设备驱动程序等功能。 ### 2. **选择开发平台和工具** 操作系统开发通常在特定的硬件平台上进行,例如 x86 架构的个人电脑或者嵌入式系统。选择合适的开发工具和环境对于成功开发操作系统至关重要,常见的工具包括汇编语言、C 语言以及相关的开发工具链。 ### 3. **设计操作系统架构** 操作系统的设计涉及到架构设计和功能划分,主要包括以下几个方面: - **内核类型**:选择单内核、微内核还是混合内核。 - **进程管理**:实现进程调度、进程通信和同步。 - **内存管理**:包括虚拟内存管理、页面置换算法等。 - **文件系统**:设计文件存储和管理的结构。 - **设备管理**:编写设备驱动程序以管理计算机硬件。 ### 4. **实现核心功能** 在设计之后,开
recommend-type

Capgemini-生成式人工智能与营销角色的演变&CMO的策略(英)-2023(1).pdf

Capgemini-生成式人工智能与营销角色的演变&CMO的策略(英)-2023(1)
recommend-type

智慧园区-数字孪生智能可视运营平台解决方案两份文件.pptx

智慧园区-数字孪生智能可视运营平台解决方案两份文件.pptx
recommend-type

共轴极紫外投影光刻物镜设计研究

"音视频-编解码-共轴极紫外投影光刻物镜设计研究.pdf" 这篇博士学位论文详细探讨了共轴极紫外投影光刻物镜的设计研究,这是音视频领域的一个细分方向,与信息技术中的高级光学工程密切相关。作者刘飞在导师李艳秋教授的指导下,对这一前沿技术进行了深入研究,旨在为我国半导体制造设备的发展提供关键技术支持。 极紫外(EUV)光刻技术是当前微电子制造业中的热点,被视为下一代主流的光刻技术。这种技术的关键在于其投影曝光系统,特别是投影物镜和照明系统的设计。论文中,作者提出了创新的初始结构设计方法,这为构建高性能的EUV光刻投影物镜奠定了基础。非球面结构的成像系统优化是另一个核心议题,通过这种方法,可以提高光刻系统的分辨率和成像质量,达到接近衍射极限的效果。 此外,论文还详细阐述了极紫外光刻照明系统的初始建模和优化策略。照明系统的优化对于确保光刻过程的精确性和一致性至关重要,能够减少缺陷,提高晶圆上的图案质量。作者使用建立的模型和优化算法,设计出多套EUV光刻机的成像系统,并且经过优化后的系统展现出优秀的分辨率和成像性能。 最后,作者在论文中做出了研究成果声明,保证了所有内容的原创性,并同意北京理工大学根据相关规定使用和分享学位论文。这表明,该研究不仅代表了个人的学术成就,也符合学术界的伦理规范,有助于推动相关领域的知识传播和进步。 这篇论文深入研究了共轴极紫外投影光刻物镜的设计,对于提升我国半导体制造技术,尤其是光刻技术的自主研发能力具有重大意义。其内容涵盖的非球面成像系统优化、EUV照明系统建模与优化等,都是目前微电子制造领域亟待解决的关键问题。这些研究成果不仅为实际的光刻设备开发提供了理论基础,也为未来的科研工作提供了新的思路和方法。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

泊松分布:离散分布中的典型代表,探索泊松分布的应用场景

![泊松分布:离散分布中的典型代表,探索泊松分布的应用场景](https://img-blog.csdnimg.cn/20190802094932661.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3ltaHVh,size_16,color_FFFFFF,t_70) # 1. 泊松分布的理论基础 泊松分布是一种离散概率分布,用于描述在固定时间或空间间隔内发生的随机事件的数量。它以法国数学家西梅翁·德尼·泊松(Siméon Denis
recommend-type

``` if build_id then -- 单个屋子 else -- 所有屋子 end ```

在你的代码片段中,`build_id` 的存在与否决定了执行不同的逻辑。如果 `build_id` 为真(非空或非零),则执行针对单个屋子的代码;否则,执行针对所有屋子的代码。这种结构在 Lua 中已经相对简洁,但为了提高可读性和潜在的性能优化,你可以考虑以下几点: 1. **使用更明确的条件语句**:可以使用 `if build_id ~= nil` 替换 `if build_id then`,因为 `nil` 在 Lua 中被视为 `false`。 2. **逻辑封装**:如果两个分支的代码复杂度相当,可以考虑将它们抽象为函数,这样更易于维护和复用。 3. **避免不必要的布尔转换*
recommend-type

基于GIS的通信管线管理系统构建与音视频编解码技术应用

音视频编解码在基于GIS的通信管线管理系统中的应用 音视频编解码技术在当前的通信技术中扮演着非常重要的角色,特别是在基于GIS的通信管线管理系统中。随着通信技术的快速发展和中国移动通信资源的建设范围不断扩大,管线资源已经成为电信运营商资源的核心之一。 在当前的通信业务中,管线资源是不可或缺的一部分,因为现有的通信业务都是建立在管线资源之上的。随着移动、电信和联通三大运营商之间的竞争日益激烈,如何高效地掌握和利用管线资源已经成为运营商的一致认识。然而,大多数的资源运营商都将资源反映在图纸和电子文件中,管理非常耗时。同时,搜索也非常不方便,当遇到大规模的通信事故时,无法找到相应的图纸,浪费了大量的时间,给运营商造成了巨大的损失。 此外,一些国家的管线资源系统也存在许多问题,如查询基本数据非常困难,新项目的建设和迁移非常困难。因此,建立一个基于GIS的通信管线管理系统变得非常必要。该系统可以实现管线资源的高效管理和查询,提高运营商的工作效率,减少事故处理时间,提高客户满意度。 在基于GIS的通信管线管理系统中,音视频编解码技术可以发挥重要作用。通过音视频编解码技术,可以将管线资源的信息实时地捕捉和处理,从而实现管线资源的实时监控和管理。同时,音视频编解码技术也可以用于事故处理中,对管线资源进行实时监控和分析,以便快速确定事故原因和位置,减少事故处理时间。 此外,基于GIS的通信管线管理系统还可以实现管线资源的空间分析和可视化,通过音视频编解码技术,可以将管线资源的信息转换为实时的视频图像,从而实现管线资源的实时监控和管理。同时,该系统还可以实现管线资源的智能分析和预测,对管线资源的使用和维护进行科学的分析和预测,从而提高管线资源的使用效率和可靠性。 音视频编解码技术在基于GIS的通信管线管理系统中扮演着非常重要的角色,可以实现管线资源的高效管理和查询,提高运营商的工作效率,减少事故处理时间,提高客户满意度。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依