function KPS44 = FK(Radian) %% input theta1 = Radian(1); theta2 = Radian(2); theta3 = Radian(3); theta4 = Radian(4); theta5 = Radian(5); theta6 = Radian(6); offset2 = -pi/2; offset3 =0; Q=[theta1;theta2+offset2;theta3+offset3;theta4;theta5;theta6]; %% D-H parameters %XB4 %d1=342;a1=40;a2=275;a3=25;d4=280;dt=73;d3=0; %XB7 d1=380;a1=30;a2=340;a3=35;d4=345;dt=87;d3=0; Tbase = [1 0 0 0; 0 1 0 0; 0 0 1 d1; 0 0 0 1]; Ttool = [1 0 0 0; 0 1 0 0; 0 0 1 dt; 0 0 0 1]; %% output II = zeros(4,4); %% T1~T6 s1=sin(Q(1));s2=sin(Q(2));s3=sin(Q(3));s4=sin(Q(4));s5=sin(Q(5));s6=sin(Q(6)); c1=cos(Q(1));c2=cos(Q(2));c3=cos(Q(3));c4=cos(Q(4));c5=cos(Q(5));c6=cos(Q(6)); t14 = a1*c1 + a3*(c1*c2*c3 - c1*s2*s3) - d3*s1 - d4*(c1*c2*s3 + c1*c3*s2) + a2*c1*c2; t24 = a1*s1 + c1*d3 + a3*(c2*c3*s1 - s1*s2*s3) - d4*(c2*s1*s3 + c3*s1*s2) + a2*c2*s1; t34 =-a2*s2 - a3*(c2*s3 + c3*s2) - d4*(c2*c3 - s2*s3); t11 =s6*(c4*s1 - s4*(c1*c2*c3 - c1*s2*s3)) - c6*(s5*(c1*c2*s3 + c1*c3*s2) - c5*(s1*s4 + c4*(c1*c2*c3 - c1*s2*s3))); t21 = - c6*(s5*(c2*s1*s3 + c3*s1*s2) + c5*(c1*s4 - c4*(c2*c3*s1 - s1*s2*s3))) - s6*(c1*c4 + s4*(c2*c3*s1 - s1*s2*s3)); t31 = s4*s6*(c2*s3 + c3*s2) - c6*(s5*(c2*c3 - s2*s3) + c4*c5*(c2*s3 + c3*s2)); t12 = s6*(s5*(c1*c2*s3 + c1*c3*s2) - c5*(s1*s4 + c4*(c1*c2*c3 - c1*s2*s3))) + c6*(c4*s1 - s4*(c1*c2*c3 - c1*s2*s3)); t22 =s6*(s5*(c2*s1*s3 + c3*s1*s2) + c5*(c1*s4 - c4*(c2*c3*s1 - s1*s2*s3))) - c6*(c1*c4 + s4*(c2*c3*s1 - s1*s2*s3)); t32 =s6*(s5*(c2*c3 - s2*s3) + c4*c5*(c2*s3 + c3*s2)) + c6*s4*(c2*s3 + c3*s2); t13= - c5*(c1*c2*s3 + c1*c3*s2) - s5*(s1*s4 + c4*(c1*c2*c3 - c1*s2*s3)); t23 = s5*(c1*s4 - c4*(c2*c3*s1 - s1*s2*s3)) - c5*(c2*s1*s3 + c3*s1*s2); t33 = c4*s5*(c2*s3 + c3*s2) - c5*(c2*c3 - s2*s3); II = [t11 t12 t13 t14; t21 t22 t23 t24; t31 t32 t33 t34; 0 0 0 1]; KPS44 = Tbase*II*Ttool; end

时间: 2023-07-23 08:12:41 浏览: 79
这是一个用于计算机器人运动学正解的 MATLAB 函数。它采用输入的关节角度(以弧度为单位)作为参数,并返回机器人末端执行器的坐标系相对于基坐标系的变换矩阵。 函数内部首先定义了机器人的 D-H 参数,然后根据输入的关节角度计算各个变换矩阵的元素。最后,通过将这些变换矩阵进行组合,得到末端执行器相对于基坐标系的变换矩阵。 函数的输出为 KPS44,即末端执行器相对于基坐标系的变换矩阵。
相关问题

function KPS6 = FK(KPS44) %% parameter rpy = zeros(1,3); eps = 0.000001; %% input T=[1 0 0 0;0 1 0 0; 0 0 1 0]; G=KPS44; H =T * ( G * [0;0;0;1]); %% rpy(2) = atan2(-KPS44(3,1),sqrt(KPS44(1,1)*KPS44(1,1)+KPS44(2,1)*KPS44(2,1))); if (abs(abs(rpy(2)) - pi / 2.0) < eps) if (rpy(2) > 0) rpy(2) = pi / 2.0; rpy(3) = 0.0; rpy(1) = atan2(KPS44(1,2),KPS44(2,2)); else rpy(2) = -pi / 2.0; rpy(3) = 0.0; rpy(1) = -atan2(KPS44(1,2), KPS44(2,2)); end else cp = cos(rpy(2)); rpy(3) = atan2(KPS44(2,1)/cp,KPS44(1,1)/cp); rpy(1) = atan2(KPS44(3,2)/cp, KPS44(3,3)/cp); end KPS6 = [H' rpy]; end

这是一个用于计算机器人末端执行器姿态的 MATLAB 函数。它接受一个4x4的变换矩阵 KPS44 作为输入,并返回末端执行器的位置和姿态信息。 函数首先定义了一些参数,包括欧拉角(roll、pitch、yaw)和一个误差阈值 eps。然后根据输入的变换矩阵 KPS44,计算末端执行器相对于基坐标系的变换矩阵 H。 接下来,函数根据变换矩阵 KPS44 中的元素计算姿态角。首先计算 pitch 角(rpy(2)),然后根据 pitch 角的值判断是否为特殊情况(pitch 角接近正负 90 度)。如果是特殊情况,则计算 roll 角(rpy(1)),否则计算 roll 角和 yaw 角(rpy(1) 和 rpy(3))。 最后,函数将位置信息和姿态信息组合成一个包含位置和姿态的向量 KPS6,并将其返回作为函数的输出。 注意:这段代码假设变换矩阵 KPS44 是正确的,并且在计算过程中没有考虑奇异性和约束条件。

Uncaught ReferenceError: CUSTOMER is not defined at KPS7XNT8:17:1

这个错误提示“Uncaught ReferenceError: CUSTOMER is not defined”表示在代码的某个位置使用了一个未定义的变量`CUSTOMER`。 这个错误通常发生在以下几种情况下: 1. 变量未声明:在使用变量之前,需要先声明它。如果你没有在代码中声明`CUSTOMER`变量,或者拼写错误,JavaScript 将无法识别它。 2. 变量作用域问题:如果变量`CUSTOMER`是在某个作用域内声明的(例如函数内部),而你在其他作用域中访问它,就会导致该错误。 3. 脚本加载顺序问题:如果你的代码依赖于其他脚本文件中定义的`CUSTOMER`变量,但是脚本加载顺序不正确,可能会导致变量未定义的错误。 解决方法包括: 1. 声明变量:确保在使用`CUSTOMER`变量之前进行了正确的声明,例如使用 `var`, `let`, 或 `const` 关键字。 2. 检查作用域:确保你在访问变量时处于正确的作用域内。如果变量是在函数内部声明的,而你在函数外部访问它,可能需要将其声明为全局变量或者调整作用域。 3. 脚本加载顺序:如果`CUSTOMER`变量是在其他脚本文件中定义的,请确保该文件在当前代码之前加载。可以通过调整脚本文件的加载顺序或者使用异步加载来解决这个问题。 请检查你的代码并根据具体情况进行相应的修正。如果问题仍然存在,可以提供更多的代码片段或上下文信息,以便更准确地定位问题。

相关推荐

import cv2 # 读取两幅待处理的图像 img1 = cv2.imread('image1.jpg', cv2.IMREAD_GRAYSCALE) img2 = cv2.imread('image2.jpg', cv2.IMREAD_GRAYSCALE) # 对图像进行高斯模糊 img1 = cv2.GaussianBlur(img1, (5, 5), 0) img2 = cv2.GaussianBlur(img2, (5, 5), 0) # 使用Shi-Tomasi算法检测特征点 corners1 = cv2.goodFeaturesToTrack(img1, 100, 0.01, 10) corners2 = cv2.goodFeaturesToTrack(img2, 100, 0.01, 10) # 对特征点进行亚像素定位 corners1 = cv2.cornerSubPix(img1, corners1, (5, 5), (-1, -1), criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)) corners2 = cv2.cornerSubPix(img2, corners2, (5, 5), (-1, -1), criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)) # 对特征点进行匹配 matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING) kps1, descs1 = sift.detectAndCompute(img1, None) kps2, descs2 = sift.detectAndCompute(img2, None) matches = matcher.match(descs1, descs2) # 使用RANSAC算法进行匹配点筛选 src_pts = np.float32([kps1[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2) dst_pts = np.float32([kps2[m.trainIdx].pt for m in matches]).reshape(-1, 1, 2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) # 对图像进行配准和拼接 result = cv2.warpPerspective(img1, M, (img1.shape[1] + img2.shape[1], img1.shape[0])) result[0:img2.shape[0], 0:img2.shape[1]] = img2 # 显示结果 cv2.imshow('Result', result) cv2.waitKey() cv2.destroyAllWindows()改进这段代码使其输出特征点连线图和拼接图

最新推荐

recommend-type

图像处理案列三之图像拼接

rawMatches = bf.knnMatch(features1,features2,2)#rawMatcher是一个Dmatch型对象,属性有.distance描述符间距离 #.trainIdx样本图像特征点标识符,.queryIdx测试图像的特征点标识符,.imgIdx训练图像的索引 ...
recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

Windows 运行Python脚本

要在 Windows 上运行 Python 脚本,你需要先安装 Python。可以从官网下载 Python 安装包并按照提示进行安装。安装完成后,就可以在命令行中输入 `python` 命令,进入 Python 解释器环境。 接着,你可以编写 Python 脚本,保存为 `.py` 后缀的文件。在命令行中进入脚本所在的目录,输入 `python script.py` 命令来运行脚本。其中 `script.py` 是你的脚本文件名。 如果你想在 Windows 上运行一个 Python 程序,但不想打开命令行窗口,可以将脚本文件拖动到 Python 可执行文件 `python.exe` 上,