function KPS44 = FK(Radian) %% input theta1 = Radian(1); theta2 = Radian(2); theta3 = Radian(3); theta4 = Radian(4); theta5 = Radian(5); theta6 = Radian(6); offset2 = -pi/2; offset3 =0; Q=[theta1;theta2+offset2;theta3+offset3;theta4;theta5;theta6]; %% D-H parameters %XB4 %d1=342;a1=40;a2=275;a3=25;d4=280;dt=73;d3=0; %XB7 d1=380;a1=30;a2=340;a3=35;d4=345;dt=87;d3=0; Tbase = [1 0 0 0; 0 1 0 0; 0 0 1 d1; 0 0 0 1]; Ttool = [1 0 0 0; 0 1 0 0; 0 0 1 dt; 0 0 0 1]; %% output II = zeros(4,4); %% T1~T6 s1=sin(Q(1));s2=sin(Q(2));s3=sin(Q(3));s4=sin(Q(4));s5=sin(Q(5));s6=sin(Q(6)); c1=cos(Q(1));c2=cos(Q(2));c3=cos(Q(3));c4=cos(Q(4));c5=cos(Q(5));c6=cos(Q(6)); t14 = a1*c1 + a3*(c1*c2*c3 - c1*s2*s3) - d3*s1 - d4*(c1*c2*s3 + c1*c3*s2) + a2*c1*c2; t24 = a1*s1 + c1*d3 + a3*(c2*c3*s1 - s1*s2*s3) - d4*(c2*s1*s3 + c3*s1*s2) + a2*c2*s1; t34 =-a2*s2 - a3*(c2*s3 + c3*s2) - d4*(c2*c3 - s2*s3); t11 =s6*(c4*s1 - s4*(c1*c2*c3 - c1*s2*s3)) - c6*(s5*(c1*c2*s3 + c1*c3*s2) - c5*(s1*s4 + c4*(c1*c2*c3 - c1*s2*s3))); t21 = - c6*(s5*(c2*s1*s3 + c3*s1*s2) + c5*(c1*s4 - c4*(c2*c3*s1 - s1*s2*s3))) - s6*(c1*c4 + s4*(c2*c3*s1 - s1*s2*s3)); t31 = s4*s6*(c2*s3 + c3*s2) - c6*(s5*(c2*c3 - s2*s3) + c4*c5*(c2*s3 + c3*s2)); t12 = s6*(s5*(c1*c2*s3 + c1*c3*s2) - c5*(s1*s4 + c4*(c1*c2*c3 - c1*s2*s3))) + c6*(c4*s1 - s4*(c1*c2*c3 - c1*s2*s3)); t22 =s6*(s5*(c2*s1*s3 + c3*s1*s2) + c5*(c1*s4 - c4*(c2*c3*s1 - s1*s2*s3))) - c6*(c1*c4 + s4*(c2*c3*s1 - s1*s2*s3)); t32 =s6*(s5*(c2*c3 - s2*s3) + c4*c5*(c2*s3 + c3*s2)) + c6*s4*(c2*s3 + c3*s2); t13= - c5*(c1*c2*s3 + c1*c3*s2) - s5*(s1*s4 + c4*(c1*c2*c3 - c1*s2*s3)); t23 = s5*(c1*s4 - c4*(c2*c3*s1 - s1*s2*s3)) - c5*(c2*s1*s3 + c3*s1*s2); t33 = c4*s5*(c2*s3 + c3*s2) - c5*(c2*c3 - s2*s3); II = [t11 t12 t13 t14; t21 t22 t23 t24; t31 t32 t33 t34; 0 0 0 1]; KPS44 = Tbase*II*Ttool; end

时间: 2023-07-23 11:12:41 浏览: 161
这是一个用于计算机器人运动学正解的 MATLAB 函数。它采用输入的关节角度(以弧度为单位)作为参数,并返回机器人末端执行器的坐标系相对于基坐标系的变换矩阵。 函数内部首先定义了机器人的 D-H 参数,然后根据输入的关节角度计算各个变换矩阵的元素。最后,通过将这些变换矩阵进行组合,得到末端执行器相对于基坐标系的变换矩阵。 函数的输出为 KPS44,即末端执行器相对于基坐标系的变换矩阵。
相关问题

function KPS6 = FK(KPS44) %% parameter rpy = zeros(1,3); eps = 0.000001; %% input T=[1 0 0 0;0 1 0 0; 0 0 1 0]; G=KPS44; H =T * ( G * [0;0;0;1]); %% rpy(2) = atan2(-KPS44(3,1),sqrt(KPS44(1,1)*KPS44(1,1)+KPS44(2,1)*KPS44(2,1))); if (abs(abs(rpy(2)) - pi / 2.0) < eps) if (rpy(2) > 0) rpy(2) = pi / 2.0; rpy(3) = 0.0; rpy(1) = atan2(KPS44(1,2),KPS44(2,2)); else rpy(2) = -pi / 2.0; rpy(3) = 0.0; rpy(1) = -atan2(KPS44(1,2), KPS44(2,2)); end else cp = cos(rpy(2)); rpy(3) = atan2(KPS44(2,1)/cp,KPS44(1,1)/cp); rpy(1) = atan2(KPS44(3,2)/cp, KPS44(3,3)/cp); end KPS6 = [H' rpy]; end

这是一个用于计算机器人末端执行器姿态的 MATLAB 函数。它接受一个4x4的变换矩阵 KPS44 作为输入,并返回末端执行器的位置和姿态信息。 函数首先定义了一些参数,包括欧拉角(roll、pitch、yaw)和一个误差阈值 eps。然后根据输入的变换矩阵 KPS44,计算末端执行器相对于基坐标系的变换矩阵 H。 接下来,函数根据变换矩阵 KPS44 中的元素计算姿态角。首先计算 pitch 角(rpy(2)),然后根据 pitch 角的值判断是否为特殊情况(pitch 角接近正负 90 度)。如果是特殊情况,则计算 roll 角(rpy(1)),否则计算 roll 角和 yaw 角(rpy(1) 和 rpy(3))。 最后,函数将位置信息和姿态信息组合成一个包含位置和姿态的向量 KPS6,并将其返回作为函数的输出。 注意:这段代码假设变换矩阵 KPS44 是正确的,并且在计算过程中没有考虑奇异性和约束条件。

//CAN总线的波特率计算公式:波特率 = 1 / (时间段1 + 时间段2 + 1) / 时钟分频器 // =(42MHz/(6+3+1))/21=250000=250Kps if(BaudRate==5){ // 125Kbps hcan1.Init.Prescaler = 42; hcan1.Init.TimeSeg1 = CAN_BS1_6TQ;//时间段1 hcan1.Init.TimeSeg2 = CAN_BS2_1TQ;//时间段2 } //CAN总线的波特率计算公式:波特率 = 1 / (时间段1 + 时间段2 + 1) / 时钟分频器 // =(42MHz/(6+1+1))/21=250000=250Kps if(BaudRate==6){// 250Kbps hcan1.Init.Prescaler = 21; hcan1.Init.TimeSeg1 = CAN_BS1_6TQ;//时间段1 hcan1.Init.TimeSeg2 = CAN_BS2_1TQ;//时间段2 }根据这些规律写出其它常用CAN波特率配置

根据上述公式,以下是常用的CAN波特率配置: 1. 500Kbps: hcan1.Init.Prescaler = 10, hcan1.Init.TimeSeg1 = CAN_BS1_6TQ, hcan1.Init.TimeSeg2 = CAN_BS2_1TQ 2. 250Kbps: hcan1.Init.Prescaler = 21, hcan1.Init.TimeSeg1 = CAN_BS1_6TQ, hcan1.Init.TimeSeg2 = CAN_BS2_1TQ 3. 125Kbps: hcan1.Init.Prescaler = 42, hcan1.Init.TimeSeg1 = CAN_BS1_6TQ, hcan1.Init.TimeSeg2 = CAN_BS2_1TQ 4. 100Kbps: hcan1.Init.Prescaler = 42, hcan1.Init.TimeSeg1 = CAN_BS1_8TQ, hcan1.Init.TimeSeg2 = CAN_BS2_3TQ 5. 50Kbps: hcan1.Init.Prescaler = 84, hcan1.Init.TimeSeg1 = CAN_BS1_8TQ, hcan1.Init.TimeSeg2 = CAN_BS2_3TQ 6. 20Kbps: hcan1.Init.Prescaler = 210, hcan1.Init.TimeSeg1 = CAN_BS1_8TQ, hcan1.Init.TimeSeg2 = CAN_BS2_3TQ 注意:以上配置仅供参考,具体配置还需要根据实际情况进行调整。
阅读全文

相关推荐

import cv2 # 读取两幅待处理的图像 img1 = cv2.imread('image1.jpg', cv2.IMREAD_GRAYSCALE) img2 = cv2.imread('image2.jpg', cv2.IMREAD_GRAYSCALE) # 对图像进行高斯模糊 img1 = cv2.GaussianBlur(img1, (5, 5), 0) img2 = cv2.GaussianBlur(img2, (5, 5), 0) # 使用Shi-Tomasi算法检测特征点 corners1 = cv2.goodFeaturesToTrack(img1, 100, 0.01, 10) corners2 = cv2.goodFeaturesToTrack(img2, 100, 0.01, 10) # 对特征点进行亚像素定位 corners1 = cv2.cornerSubPix(img1, corners1, (5, 5), (-1, -1), criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)) corners2 = cv2.cornerSubPix(img2, corners2, (5, 5), (-1, -1), criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)) # 对特征点进行匹配 matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING) kps1, descs1 = sift.detectAndCompute(img1, None) kps2, descs2 = sift.detectAndCompute(img2, None) matches = matcher.match(descs1, descs2) # 使用RANSAC算法进行匹配点筛选 src_pts = np.float32([kps1[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2) dst_pts = np.float32([kps2[m.trainIdx].pt for m in matches]).reshape(-1, 1, 2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) # 对图像进行配准和拼接 result = cv2.warpPerspective(img1, M, (img1.shape[1] + img2.shape[1], img1.shape[0])) result[0:img2.shape[0], 0:img2.shape[1]] = img2 # 显示结果 cv2.imshow('Result', result) cv2.waitKey() cv2.destroyAllWindows()改进这段代码使其输出特征点连线图和拼接图

最新推荐

recommend-type

图像处理案列三之图像拼接

1. **SIFT特征检测**:`SIFT`(Scale-Invariant Feature Transform,尺度不变特征变换)是一种强大的图像特征检测算法。在`detectAndDescribe()`函数中,首先将图像转换为灰度图像,然后使用`SIFT_create()`创建SIFT...
recommend-type

YOLOv3-训练-修剪.zip

YOLOv3-训练-修剪YOLOv3-训练-修剪的Python3.6、Pytorch 1.1及以上,numpy>1.16,tensorboard=1.13以上YOLOv3的训练参考[博客](https://blog.csdn.net/qq_34795071/article/details/90769094 )基于的ultralytics/yolov3代码大家也可以看下这个https://github.com/tanluren/yolov3-channel-and-layer-pruning正常训练(基线)python train.py --data data/VHR.data --cfg cfg/yolov3.cfg --weights/yolov3.weights --epochs 100 --batch-size 32 #后面的epochs自行更改 直接加载weights可以更好的收敛剪枝算法介绍本代码基于论文Learning Efficient Convolutional Networks Through Network Slimming (ICCV
recommend-type

毕业设计&课设_智能算法中台管理系统.zip

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自