matlab lstm分类模型搭建代码
时间: 2023-07-28 18:10:32 浏览: 114
下面是一个使用LSTM网络进行分类的Matlab代码示例:
```matlab
% 加载数据
load fisheriris;
X = meas.';
Y = ind2vec(grp.');
% 分割数据集
[trainInd,~,testInd] = dividerand(size(X,2),0.6,0,0.4);
XTrain = X(:,trainInd);
YTrain = Y(:,trainInd);
XTest = X(:,testInd);
YTest = Y(:,testInd);
% 构建LSTM网络
numFeatures = size(XTrain,1);
numClasses = size(YTrain,1);
numHiddenUnits = 100;
layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits,'OutputMode','last')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
% 定义训练选项
maxEpochs = 100;
miniBatchSize = 16;
validationFrequency = floor(numel(YTrain)/miniBatchSize);
options = trainingOptions('adam', ...
'ExecutionEnvironment','auto', ...
'GradientThreshold',1, ...
'MaxEpochs',maxEpochs, ...
'MiniBatchSize',miniBatchSize, ...
'SequenceLength','longest', ...
'Shuffle','every-epoch', ...
'ValidationData',{XTest,YTest}, ...
'ValidationFrequency',validationFrequency, ...
'Verbose',false, ...
'Plots','training-progress');
% 训练网络
net = trainNetwork(XTrain,YTrain,layers,options);
% 使用网络进行预测
YPred = classify(net,XTest);
% 计算分类准确率
accuracy = sum(YPred == categorical(vec2ind(YTest)))/numel(YTest);
fprintf('Test accuracy: %0.2f%%\n',accuracy*100);
```
这个示例使用Fisheriris数据集进行分类,构建了一个LSTM网络,然后使用trainNetwork函数进行训练,最后计算了分类准确率。你可以根据自己的数据集和问题修改代码中的参数和网络结构。
阅读全文