imagefolder pytorch
时间: 2023-04-13 13:00:25 浏览: 203
imagefolder pytorch是一个PyTorch库中的一个模块,用于加载图像数据集。它可以自动地将图像数据集按照文件夹的结构进行分类,并且可以对图像进行预处理,例如裁剪、缩放、旋转等操作。使用imagefolder pytorch可以方便地加载和处理图像数据集,是深度学习中常用的工具之一。
相关问题
用c++ libtorch实现pytorch的ImageFolder方法
以下是使用C++和libtorch实现类似于pytorch的ImageFolder方法的示例代码:
```
#include <torch/torch.h>
#include <opencv2/opencv.hpp>
class ImageFolderDataset : public torch::data::datasets::Dataset<ImageFolderDataset> {
public:
ImageFolderDataset(const std::string& root_dir, const std::string& extensions = ".jpg")
: root_dir_(root_dir), extensions_(extensions) {
// find all image files in the root directory
for (auto& dir_entry : std::filesystem::directory_iterator(root_dir)) {
auto path = dir_entry.path();
if (std::filesystem::is_regular_file(path) && is_image_file(path)) {
image_paths_.push_back(path);
}
}
}
// get the i-th example in the dataset
torch::data::Example<> get(size_t index) override {
// load the image and convert to tensor
auto image = cv::imread(image_paths_[index].string());
cv::cvtColor(image, image, cv::COLOR_BGR2RGB); // convert from BGR to RGB
torch::Tensor tensor_image = torch::from_blob(image.data, { image.rows, image.cols, 3 }, torch::kByte).permute({ 2, 0, 1 }).toType(torch::kFloat) / 255.0;
// get the label from the directory name
auto label_path = image_paths_[index].parent_path();
int label = std::distance(std::filesystem::directory_iterator(root_dir_), std::find_if(std::filesystem::directory_iterator(root_dir_), std::filesystem::directory_iterator(), [&label_path](const auto& dir_entry) { return dir_entry.path() == label_path; }));
return { tensor_image.clone(), torch::tensor(label) };
}
// return the number of examples in the dataset
torch::optional<size_t> size() const override {
return image_paths_.size();
}
private:
std::vector<std::filesystem::path> image_paths_;
std::string root_dir_;
std::string extensions_;
bool is_image_file(const std::filesystem::path& path) const {
auto extension = path.extension().string();
return extensions_.empty() || std::find(extensions_.begin(), extensions_.end(), extension) != extensions_.end();
}
};
int main() {
// create the dataset and dataloader
std::string root_dir = "/path/to/dataset";
ImageFolderDataset dataset(root_dir);
auto data_loader = torch::data::make_data_loader<torch::data::samplers::SequentialSampler>(dataset, torch::data::DataLoaderOptions().batch_size(32));
// train the model using the dataset
// ...
}
```
在上面的代码中,`ImageFolderDataset`类继承了`torch::data::datasets::Dataset`,并实现了`get()`和`size()`方法,以便能够使用`torch::data::make_data_loader()`函数创建一个数据加载器。在`get()`方法中,我们加载了图像并将其转换为张量,并从目录名称中获取标签。在`size()`方法中,我们返回数据集中的示例数。
注意,这里我们使用了OpenCV库来加载和处理图像。如果您想使用其他库,可以相应地修改代码。
pytorch中的ImageFolder和dataset区别
`ImageFolder` 和 `dataset` 都是 PyTorch 中用于处理数据集的类,但它们有一些区别。
`ImageFolder` 是 `torchvision.datasets` 中的一个类,用于处理文件夹形式的数据集,其中每个子文件夹表示一个类,文件夹中的图像文件被视为该类的样本。`ImageFolder` 可以自动将图像文件预处理为 PyTorch 所需的张量形式,并返回一个可以直接用于训练的数据集对象。
`dataset` 是 PyTorch 中的一个抽象类,用于表示数据集。它是一个抽象类,需要继承并实现其中的 `__len__` 和 `__getitem__` 方法。这个类可以自定义数据集的各个方面,包括数据加载、预处理等。`dataset` 可以用于处理各种类型的数据,包括图像、文本、声音等等。
因此,`ImageFolder` 是 `dataset` 的一个具体实现,它专门用于处理文件夹形式的图像数据集。而 `dataset` 可以自定义数据集的各个方面,适用于处理各种类型的数据。
阅读全文