基于机器学习的滚动轴承故障诊断
时间: 2023-12-25 11:05:22 浏览: 133
基于深度学习的滚动轴承故障诊断方法项目源码+全部数据(python毕业设计).zip
5星 · 资源好评率100%
滚动轴承是旋转机械中使用最广泛的元件之一,其故障会导致机械的停机、生产损失、设备损坏等问题。因此,滚动轴承的故障诊断一直是机械领域的研究热点之一。近年来,随着机器学习技术的发展,越来越多的研究者开始将机器学习应用于滚动轴承故障诊断中。
基于机器学习的滚动轴承故障诊断的基本思路是,通过采集滚动轴承的运行数据,如振动信号、声音信号、温度信号等,构建相应的数据集,并应用机器学习算法对数据进行处理和分析,从而实现对滚动轴承的故障进行诊断。
常用的机器学习算法包括支持向量机(SVM)、人工神经网络(ANN)、决策树(DT)、随机森林(RF)等。其中,ANN是一种常用的方法,其基本原理是通过对样本数据的学习得到各个特征之间的关系,并用学习到的模型进行预测。在滚动轴承故障诊断中,ANN可以通过学习不同故障状态下的振动信号、声音信号等数据特征,实现对滚动轴承故障的自动诊断。此外,SVM也是一种常用的方法,其基本原理是通过将样本数据转换到高维空间中,找到超平面来分割不同的样本类别。在滚动轴承故障诊断中,SVM可以通过学习不同故障状态下的特征向量,实现对滚动轴承故障的分类。
基于机器学习的滚动轴承故障诊断具有自动化程度高、诊断准确率高等特点,已经被广泛应用于实际生产中。
阅读全文