解释一下代码:def _init_weight(self): for m in self.modeles(): if isinstance(m, nn.Conv1d): torch.nn.init.kaiming_normal_(m.weight) elif isinstance(m, nn.Linear): torch.nn.init.kaiming_normal_(m.weight)
时间: 2024-04-06 07:32:47 浏览: 80
这段代码定义了一个名为`_init_weight`的方法,它用于对类中的模型权重进行初始化。下面是这个方法的解释:
1. `for m in self.modeles():`:这行代码使用了一个for循环,遍历了类中的所有模型。这里的`self.modeles()`表示调用类中的`modeles`方法,该方法返回一个包含所有模型的列表。
2. `if isinstance(m, nn.Conv1d):`:这行代码使用了Python中的`isinstance`函数来检查当前模型是否是`nn.Conv1d`类型的模型。如果当前模型是卷积模型,则执行下面的语句。
3. `torch.nn.init.kaiming_normal_(m.weight)`:这行代码使用了PyTorch中的`torch.nn.init.kaiming_normal_`函数,对当前模型的权重进行了初始化。这个函数使用了Kaiming正态分布初始化方法。
4. `elif isinstance(m, nn.Linear):`:这行代码使用了Python中的`isinstance`函数来检查当前模型是否是`nn.Linear`类型的模型。如果当前模型是全连接模型,则执行下面的语句。
5. `torch.nn.init.kaiming_normal_(m.weight)`:这行代码同样使用了PyTorch中的`torch.nn.init.kaiming_normal_`函数,对当前模型的权重进行了初始化。
综上所述,这段代码的作用是对类中所有的卷积模型和全连接模型的权重进行初始化,以提高模型的训练效果。这里使用的是Kaiming正态分布初始化方法,它能够使得模型更加稳定和收敛更快。
阅读全文