df00的列名为['Unnamed: 0', 'datetime', 'speed', 'Unnamed: 0.3', 'Unnamed: 0', 'datetime', 'speed', 'Unnamed: 0.1', 'datetime.1', 'zxjmax1end', 'Unnamed: 0.2', 'datetime.2', 'zxjmax2end', 'Unnamed: 0', 'datetime', 'zxjmax1end', 'Unnamed: 0', 'datetime', 'zxjmax2end'] 去掉列名中包含“Unnamed”的列,对比列名中包含“datetime”的列数据长度,保留数据最长的列,其他列删除。
时间: 2023-08-23 21:06:56 浏览: 102
可以使用以下代码进行处理:
```python
import pandas as pd
# 读入数据
df = pd.read_csv('df00.csv')
# 删除列名中包含"Unnamed"的列
df = df.loc[:, ~df.columns.str.contains('Unnamed')]
# 获取包含"datetime"的列名
datetime_cols = [col for col in df.columns if 'datetime' in col]
# 找出数据最长的列
max_len = 0
max_col = ''
for col in datetime_cols:
if len(df[col]) > max_len:
max_len = len(df[col])
max_col = col
# 保留最长的列,删除其他列
datetime_cols.remove(max_col)
df.drop(columns=datetime_cols, inplace=True)
# 重命名最长的列为"datetime"
df.rename(columns={max_col: 'datetime'}, inplace=True)
```
这段代码会将数据中列名包含"Unnamed"的列删除,然后获取所有列名中包含"datetime"的列。接着,找出数据最长的列,并将其重命名为"datetime",删除其他包含"datetime"的列。最终得到的数据框就是只包含一个"datetime"列的新数据框。
相关问题
Name: Unnamed: 1, dtype: object
在Pandas DataFrame中,"Name: Unnamed: 1, dtype: object"是一个列标题和数据类型的简略表示。这里有两个部分:
1. "Name: Unnamed: 1" - 表示该列的名称未设置(可能是默认的),名字是“Unnamed”,其编号是1(对于DataFrame的第二列)。如果你看到的是Unnamed: 0,那通常代表了DataFrame的第一个无名列。
2. "dtype: object" - 数据类型(Data Type)为"object",意味着这一列的数据是以字符串(String)的形式存储的,而不是数值型(int、float等),或者是日期时间(DateTime)等特定类型。在Pandas中,"object"通常用来表示非数字的数据。
当你打印出DataFrame的一部分或者使用describe()函数时,会显示这样的信息,帮助你理解每个列的内容和类型。如果想要更具体的列名,你可以直接给DataFrame的列赋值:
```python
df = pd.DataFrame({
'Column1': [...], # 更改实际数据
'Unnamed: 1': [...]
})
df.rename(columns={'Unnamed: 1': 'NewColumnName'}, inplace=True)
```
这里将'Unnamed: 1'列重命名为'NewColumnName'。
优化代码 def cluster_format(self, start_time, end_time, save_on=True, data_clean=False, data_name=None): """ local format function is to format data from beihang. :param start_time: :param end_time: :return: """ # 户用簇级数据清洗 if data_clean: unused_index_col = [i for i in self.df.columns if 'Unnamed' in i] self.df.drop(columns=unused_index_col, inplace=True) self.df.drop_duplicates(inplace=True, ignore_index=True) self.df.reset_index(drop=True, inplace=True) dupli_header_lines = np.where(self.df['sendtime'] == 'sendtime')[0] self.df.drop(index=dupli_header_lines, inplace=True) self.df = self.df.apply(pd.to_numeric, errors='ignore') self.df['sendtime'] = pd.to_datetime(self.df['sendtime']) self.df.sort_values(by='sendtime', inplace=True, ignore_index=True) self.df.to_csv(data_name, index=False) # 调用基本格式化处理 self.df = super().format(start_time, end_time) module_number_register = np.unique(self.df['bat_module_num']) # if registered m_num is 0 and not changed, there is no module data if not np.any(module_number_register): logger.logger.warning("No module data!") sys.exit() if 'bat_module_voltage_00' in self.df.columns: volt_ref = 'bat_module_voltage_00' elif 'bat_module_voltage_01' in self.df.columns: volt_ref = 'bat_module_voltage_01' elif 'bat_module_voltage_02' in self.df.columns: volt_ref = 'bat_module_voltage_02' else: logger.logger.warning("No module data!") sys.exit() self.df.dropna(axis=0, subset=[volt_ref], inplace=True) self.df.reset_index(drop=True, inplace=True) self.headers = list(self.df.columns) # time duration of a cluster self.length = len(self.df) if self.length == 0: logger.logger.warning("After cluster data clean, no effective data!") raise ValueError("No effective data after cluster data clean.") self.cluster_stats(save_on) for m in range(self.mod_num): print(self.clusterid, self.mod_num) self.module_list.append(np.unique(self.df[f'bat_module_sn_{str(m).zfill(2)}'].dropna())[0])
Here are some possible optimizations for the given code:
1. Instead of using a list comprehension to find columns with 'Unnamed' in their names, you can use the `filter()` function along with a lambda function to achieve the same result in a more concise way:
```
unused_index_col = list(filter(lambda x: 'Unnamed' in x, self.df.columns))
```
2. Instead of dropping duplicates and resetting the index separately, you can use the `drop_duplicates()` function with the `ignore_index` parameter set to `True` to achieve both in one step:
```
self.df.drop_duplicates(inplace=True, ignore_index=True)
```
3. Instead of using `sys.exit()` to terminate the program when there is no module data, you can raise a `ValueError` with an appropriate error message:
```
raise ValueError("No module data!")
```
4. Instead of using a series of `if` statements to find the voltage reference column, you can use the `loc` accessor with a boolean mask to select the first column that starts with 'bat_module_voltage':
```
volt_ref_col = self.df.columns[self.df.columns.str.startswith('bat_module_voltage')][0]
```
5. Instead of using a loop to append a single item to a list, you can use the `append()` method directly:
```
self.module_list.append(np.unique(self.df[f'bat_module_sn_{str(m).zfill(2)}'].dropna())[0])
```
By applying these optimizations, the code can become more concise and efficient.
阅读全文