transformer声调识别完整代码
时间: 2023-09-03 16:07:09 浏览: 97
以下是使用transformer进行声调识别的完整代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=5000):
super(PositionalEncoding, self).__init__()
self.d_model = d_model
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x * np.sqrt(self.d_model)
seq_len = x.size(1)
x = x + self.pe[:seq_len, :]
return x
class TonalDataset(torch.utils.data.Dataset):
def __init__(self, data, label):
super(TonalDataset, self).__init__()
self.data = data
self.label = label
def __len__(self):
return len(self.label)
def __getitem__(self, index):
data = self.data[index]
label = self.label[index]
return data, label
class TonalModel(nn.Module):
def __init__(self, input_dim, hidden_dim, num_layers, num_classes):
super(TonalModel, self).__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.num_classes = num_classes
self.pos_encoder = PositionalEncoding(input_dim)
encoder_layers = nn.TransformerEncoderLayer(d_model=input_dim, nhead=4, dim_feedforward=hidden_dim, dropout=0.1)
self.transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=num_layers)
self.fc = nn.Linear(input_dim, num_classes)
def forward(self, x):
x = self.pos_encoder(x)
x = self.transformer_encoder(x)
x = x.mean(dim=1)
x = self.fc(x)
return x
def collate_fn(batch):
data = [item[0] for item in batch]
label = [item[1] for item in batch]
data = nn.utils.rnn.pad_sequence(data, batch_first=True, padding_value=0)
label = torch.tensor(label)
return data, label
# 加载数据
train_data = np.load('train_data.npy')
train_label = np.load('train_label.npy')
val_data = np.load('val_data.npy')
val_label = np.load('val_label.npy')
train_dataset = TonalDataset(train_data, train_label)
val_dataset = TonalDataset(val_data, val_label)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=32, collate_fn=collate_fn, shuffle=True)
val_loader = torch.utils.data.DataLoader(dataset=val_dataset, batch_size=32, collate_fn=collate_fn, shuffle=False)
# 定义模型
model = TonalModel(40, 256, 3, 3)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
# 训练模型
for epoch in range(100):
model.train()
for data, label in train_loader:
optimizer.zero_grad()
output = model(data)
loss = criterion(output, label)
loss.backward()
optimizer.step()
model.eval()
val_loss = 0
val_acc = 0
with torch.no_grad():
for data, label in val_loader:
output = model(data)
loss = criterion(output, label)
val_loss += loss.item() * data.size(0)
_, pred = torch.max(output, 1)
val_acc += (pred == label).sum().item()
val_loss /= len(val_dataset)
val_acc /= len(val_dataset)
print('Epoch [{}/{}], val_loss: {:.4f}, val_acc: {:.4f}'.format(epoch+1, 100, val_loss, val_acc))
```
在这个示例中,我们使用transformer模型对40维MFCC特征进行声调分类。我们先定义了一个PositionalEncoding类,用于添加位置编码,然后定义了一个TonalDataset类,用于加载数据。接着我们定义了一个TonalModel类,其中包含一个transformer编码器和一个线性分类器。在训练过程中,我们使用交叉熵损失函数和Adam优化器对模型进行优化。
阅读全文