二维离散傅里叶变换计算
时间: 2023-05-28 18:07:16 浏览: 938
Matlab实现二维傅里叶变换(FFT2)
3星 · 编辑精心推荐
二维离散傅里叶变换(2D DFT)是在二维离散信号上进行的傅里叶变换。它将一个二维离散信号映射到频域,以便进行频域处理。在计算机视觉和图像处理中,2D DFT经常用于图像增强、图像压缩、滤波等应用。
下面是计算2D DFT的步骤:
1. 对于一个$M \times N$的二维离散信号$f(x,y)$,先对每一行进行一维离散傅里叶变换(1D DFT),得到$F(u,v)$:
$F(u,v) = \sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)e^{-i2\pi(\frac{ux}{M}+\frac{vy}{N})}$
其中,$u=0,1,...,M-1$,$v=0,1,...,N-1$。
2. 对于得到的$F(u,v)$,再对每一列进行一维离散傅里叶变换,得到$F(k,l)$:
$F(k,l) = \sum_{u=0}^{M-1}\sum_{v=0}^{N-1}F(u,v)e^{-i2\pi(\frac{ku}{M}+\frac{lv}{N})}$
其中,$k=0,1,...,M-1$,$l=0,1,...,N-1$。
3. 得到的$F(k,l)$就是信号$f(x,y)$的二维离散傅里叶变换。它包含了原始信号的频率信息,可以进行频域处理。
4. 计算反变换时,可以按照上述步骤逆向计算即可。先对每一列进行一维离散傅里叶反变换(IDFT),再对每一行进行IDFT,得到原始信号$f(x,y)$。
注意,计算2D DFT时,通常会使用快速傅里叶变换(FFT)算法,以提高计算效率。
阅读全文