帮我写一个C++程序,我有一个候选框容器,std::vectorcv::Rect bboxes;还有这些框的中心点容器std::vectorcv::Point centers,这些我都已经计算好可以当作输入,我想使用dbscan聚类把小框融合成大框,麻烦帮我写一个程序。我没有dbscan库的支持,需要你给我提供dbscan函数的实现。
时间: 2024-02-18 09:04:39 浏览: 159
dbscan.rar_DBSCAN_DBSCAN sql_dbsan_dbscan c++_聚类算法
好的,我可以帮您实现一个简单的dbscan函数来聚类小框并融合成大框。以下是代码实现:
```c++
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
const double eps = 20.0; // DBSCAN中的半径参数
const int minPts = 3; // DBSCAN中的最小点数参数
// 计算两个点之间的欧几里得距离
double calc_dist(cv::Point p1, cv::Point p2) {
double dx = p1.x - p2.x;
double dy = p1.y - p2.y;
return sqrt(dx * dx + dy * dy);
}
// 获取以p为中心,半径为eps的圆内的所有点
vector<int> get_neighbors(int p, vector<cv::Point>& centers) {
vector<int> neighbors;
for (int i = 0; i < centers.size(); i++) {
if (calc_dist(centers[i], centers[p]) <= eps) {
neighbors.push_back(i);
}
}
return neighbors;
}
// 进行dbscan聚类
vector<vector<int>> dbscan(vector<cv::Point>& centers) {
int n = centers.size();
vector<vector<int>> clusters;
vector<int> visited(n, 0); // 0表示未访问,1表示已访问
for (int i = 0; i < n; i++) {
if (visited[i]) continue;
visited[i] = 1;
vector<int> neighbors = get_neighbors(i, centers);
if (neighbors.size() < minPts) continue;
vector<int> cluster;
cluster.push_back(i);
for (int j = 0; j < neighbors.size(); j++) {
int p = neighbors[j];
if (visited[p]) continue;
visited[p] = 1;
vector<int> p_neighbors = get_neighbors(p, centers);
if (p_neighbors.size() >= minPts) {
neighbors.insert(neighbors.end(), p_neighbors.begin(), p_neighbors.end());
}
if (!find(cluster.begin(), cluster.end(), p)) {
cluster.push_back(p);
}
}
clusters.push_back(cluster);
}
return clusters;
}
// 融合小框
vector<cv::Rect> merge_rects(vector<cv::Rect>& bboxes, vector<vector<int>>& clusters) {
vector<cv::Rect> merged_rects;
for (int i = 0; i < clusters.size(); i++) {
int left = bboxes[clusters[i][0]].tl().x;
int top = bboxes[clusters[i][0]].tl().y;
int right = bboxes[clusters[i][0]].br().x;
int bottom = bboxes[clusters[i][0]].br().y;
for (int j = 1; j < clusters[i].size(); j++) {
cv::Rect rect = bboxes[clusters[i][j]];
left = min(left, rect.tl().x);
top = min(top, rect.tl().y);
right = max(right, rect.br().x);
bottom = max(bottom, rect.br().y);
}
merged_rects.push_back(cv::Rect(left, top, right - left, bottom - top));
}
return merged_rects;
}
int main() {
// 假设已有候选框容器bboxes和中心点容器centers
vector<cv::Rect> bboxes;
vector<cv::Point> centers;
// ...
// 进行dbscan聚类
vector<vector<int>> clusters = dbscan(centers);
// 融合小框
vector<cv::Rect> merged_rects = merge_rects(bboxes, clusters);
// 输出结果
for (int i = 0; i < merged_rects.size(); i++) {
cout << "merged rect " << i << ": " << merged_rects[i] << endl;
}
return 0;
}
```
代码中用到的dbscan算法是一种密度聚类算法,它的核心思想是将数据点分为核心点、边界点和噪声点三类,然后通过核心点之间的连通性不断扩展簇。在本代码中,我们通过计算每个点的邻居点来判断其是否为核心点,然后不断扩展邻居点直到簇不再增加。最终,聚类出来的点被用来计算融合后的大框。
阅读全文