yolov5 PyTorch模型转TensorRT
时间: 2024-06-08 12:08:51 浏览: 221
Pytorch 转TensorRT5
将YOLOv5 PyTorch模型转换为TensorRT模型需要以下步骤:
1. 安装TensorRT和PyTorch。
2. 下载并安装yolov5。
3. 使用PyTorch将yolov5模型转换为ONNX格式。
```
python models/export.py --weights yolov5s.pt --img 640 --batch 1 --include onnx # yolov5s
```
4. 安装ONNX-TensorRT。
```
git clone https://github.com/onnx/onnx-tensorrt.git
cd onnx-tensorrt
git submodule update --init --recursive
mkdir build && cd build
cmake .. -DTENSORRT_ROOT=/path/to/tensorrt -DCMAKE_CXX_COMPILER=g++-7
make -j
sudo make install
```
5. 使用ONNX-TensorRT将ONNX模型转换为TensorRT模型。
```
import onnx
import onnx_tensorrt.backend as backend
model = onnx.load("yolov5s.onnx") # Load the ONNX model
engine = backend.prepare(model, device="CUDA:0") # Prepare the TensorRT model
with open("yolov5s.engine", "wb") as f: # Serialize the TensorRT engine
f.write(engine.serialize())
```
6. 测试TensorRT模型的性能和准确性。
```
import pycuda.driver as cuda
import pycuda.autoinit
import numpy as np
import time
# Load the TensorRT engine
with open("yolov5s.engine", "rb") as f:
engine = cuda.Context().deserialize_cuda_engine(f.read())
# Create the TensorRT inference context
context = engine.create_execution_context()
# Allocate the input and output buffers
input_shape = engine.get_binding_shape(0)
output_shape = engine.get_binding_shape(1)
input_buffer = cuda.mem_alloc(np.prod(input_shape) * 4)
output_buffer = cuda.mem_alloc(np.prod(output_shape) * 4)
# Prepare the input data
input_data = np.random.rand(*input_shape).astype(np.float32)
# Copy the input data to the input buffer
cuda.memcpy_htod(input_buffer, input_data)
# Run inference
start_time = time.time()
context.execute_v2(bindings=[int(input_buffer), int(output_buffer)])
end_time = time.time()
# Copy the output data to the output buffer
output_data = np.empty(output_shape, dtype=np.float32)
cuda.memcpy_dtoh(output_data, output_buffer)
# Print the inference time and output data
print("Inference time: {} ms".format((end_time - start_time) * 1000))
print("Output shape: {}".format(output_shape))
print("Output data: {}".format(output_data))
```
阅读全文