编写matlab蚁群算法求解tsp问题的代码,要求7个城市
时间: 2024-02-05 09:13:23 浏览: 83
以下是使用蚁群算法求解TSP问题的Matlab代码,假设有7个城市:
```matlab
%% 初始化数据
num_city = 7; % 城市数量
num_ant = 50; % 蚂蚁数量
alpha = 1; % 信息素重要程度因子
beta = 5; % 启发式因子
rho = 0.5; % 信息素挥发因子
Q = 1; % 信息素更新常数
distance = [0 2 7 3 6 5 4;% 城市距离矩阵
2 0 4 5 8 9 3;
7 4 0 6 5 3 2;
3 5 6 0 9 4 8;
6 8 5 9 0 3 7;
5 9 3 4 3 0 5;
4 3 2 8 7 5 0];
pheromone = ones(num_city,num_city); % 信息素矩阵
best_distance = Inf; % 最佳路径距离
best_path = zeros(1,num_city); % 最佳路径
%% 蚁群算法迭代
for iter = 1:100 % 迭代次数
% 初始化蚂蚁位置和已访问城市
ant_pos = ones(num_ant,1);
visited_city = zeros(num_ant,num_city);
for ant = 1:num_ant
visited_city(ant,1) = 1;
end
% 蚂蚁行走
for step = 2:num_city
for ant = 1:num_ant
visited = visited_city(ant,:);
unvisited = find(visited==0);
prob = zeros(1,length(unvisited));
for i = 1:length(unvisited)
city = unvisited(i);
prob(i) = pheromone(ant_pos(ant),city)^alpha * (1/distance(ant_pos(ant),city))^beta;
end
prob = prob/sum(prob);
cum_prob = cumsum(prob);
r = rand;
next_city = unvisited(find(cum_prob>=r,1));
visited_city(ant,step) = next_city;
ant_pos(ant) = next_city;
end
end
% 计算路径长度和更新最佳路径
for ant = 1:num_ant
path = visited_city(ant,:);
dist = 0;
for i = 1:num_city-1
dist = dist + distance(path(i),path(i+1));
end
dist = dist + distance(path(num_city),path(1));
if dist < best_distance
best_distance = dist;
best_path = path;
end
% 更新信息素
for i = 1:num_city-1
pheromone(path(i),path(i+1)) = (1-rho) * pheromone(path(i),path(i+1)) + Q/dist;
end
pheromone(path(num_city),path(1)) = (1-rho) * pheromone(path(num_city),path(1)) + Q/dist;
end
end
%% 输出最佳路径和距离
disp('最佳路径:');
disp(best_path);
disp(['最佳路径距离: ' num2str(best_distance)]);
```
阅读全文
相关推荐



















