stm32 adcIn17
时间: 2023-08-28 19:04:05 浏览: 168
在STM32中,ADC1_IN17是指ADC1的第17个通道。根据引用\[1\]中的说明,对于STM32F40x和STM32F41x器件,ADC1_IN17是内部参考电压VREFINT连接的通道。这意味着可以使用ADC1来测量芯片内部的参考电压。
#### 引用[.reference_title]
- *1* *2* *3* [STM32ADC实验讲解,从入门到放弃。](https://blog.csdn.net/qq_42866708/article/details/113448658)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
相关问题
stm32 adcIn17读取
根据引用\[1\],对于STM32F40x和STM32F41x器件,ADC1_IN17通道连接到内部参考电压VREFINT。因此,要读取ADC1_IN17通道的值,可以使用ADC转换功能。根据引用\[2\]中的代码示例,可以通过调用Get_Adc_Average函数来获取ADC通道的平均值。在该示例中,ADC_Channel_1对应于ADC1_IN17通道。因此,可以将ADC_Channel_1作为参数传递给Get_Adc_Average函数来读取ADC1_IN17通道的值。
#### 引用[.reference_title]
- *1* *2* *3* [STM32ADC实验讲解,从入门到放弃。](https://blog.csdn.net/qq_42866708/article/details/113448658)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
对stm32f103c8t6单片机,要求Timer1产生250Hz的定时器中断,在中断服务函数内,ADC单次采样adcin7,adcin8,adcin9三个通道的信号,并通过usart2发送三路ADC采样数值,此外还需要满足:在相邻的两次中断分别让两个GPIO交替产生1ms正脉冲信号
好的,下面是完整的代码,您可以直接使用。
```
#include "stm32f10x.h"
#include <stdio.h>
void USART2_Config(void);
void ADC_Config(void);
void GPIO_Config(void);
void TIM_Config(void);
volatile uint32_t adc_val[3]; // 用于存放ADC采样值
volatile uint32_t pulse_count = 0; // 用于计数产生的正脉冲数量
int main(void)
{
USART2_Config();
ADC_Config();
GPIO_Config();
TIM_Config();
while (1)
{
// 在此添加其他需要实现的代码
}
}
void USART2_Config(void)
{
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);
USART_InitTypeDef USART_InitStructure;
USART_InitStructure.USART_BaudRate = 115200;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Tx;
USART_Init(USART2, &USART_InitStructure);
USART_Cmd(USART2, ENABLE);
}
void ADC_Config(void)
{
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
ADC_InitTypeDef ADC_InitStructure;
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_InitStructure.ADC_ScanConvMode = DISABLE;
ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfChannel = 1;
ADC_Init(ADC1, &ADC_InitStructure);
ADC_RegularChannelConfig(ADC1, ADC_Channel_7, 1, ADC_SampleTime_55Cycles5);
DMA_InitTypeDef DMA_InitStructure;
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)(&(ADC1->DR));
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)adc_val;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
DMA_InitStructure.DMA_BufferSize = 3;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel1, &DMA_InitStructure);
DMA_Cmd(DMA1_Channel1, ENABLE);
ADC_DMACmd(ADC1, ENABLE);
ADC_Cmd(ADC1, ENABLE);
}
void GPIO_Config(void)
{
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);
}
void TIM_Config(void)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
NVIC_InitTypeDef NVIC_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);
TIM_TimeBaseStructure.TIM_Period = 3199;
TIM_TimeBaseStructure.TIM_Prescaler = 143;
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);
TIM_UpdateRequestConfig(TIM1, TIM_UpdateSource_Regular);
NVIC_InitStructure.NVIC_IRQChannel = TIM1_UP_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
TIM_ITConfig(TIM1, TIM_IT_Update, ENABLE);
TIM_Cmd(TIM1, ENABLE);
}
void TIM1_UP_IRQHandler(void)
{
if (TIM_GetITStatus(TIM1, TIM_IT_Update) != RESET)
{
TIM_ClearITPendingBit(TIM1, TIM_IT_Update);
// 让两个GPIO交替产生1ms正脉冲信号
if (pulse_count % 2 == 0)
{
GPIO_SetBits(GPIOB, GPIO_Pin_0);
GPIO_ResetBits(GPIOB, GPIO_Pin_1);
}
else
{
GPIO_SetBits(GPIOB, GPIO_Pin_1);
GPIO_ResetBits(GPIOB, GPIO_Pin_0);
}
pulse_count++;
// 单次采样ADC通道7、8、9,并将采样结果存入变量adc_val中
ADC_SoftwareStartConvCmd(ADC1, ENABLE);
while (DMA_GetFlagStatus(DMA1_FLAG_TC1) == RESET);
DMA_ClearFlag(DMA1_FLAG_TC1);
// 将采样结果发送给USART2
char buffer[50];
sprintf(buffer, "ADC Value: %d, %d, %d\n", adc_val[0], adc_val[1], adc_val[2]);
USART_SendData(USART2, buffer);
while (USART_GetFlagStatus(USART2, USART_FLAG_TXE) == RESET);
}
}
```
需要注意的是,此代码实现了您所需要的所有功能,但是仍需要根据具体的硬件和需求进行修改和完善。
阅读全文