飞浆平台上完成基于MNIST手写数字识别数据集,设计合适的前馈神经网络进行实验,并取得95%以上的准确率
时间: 2024-03-25 11:38:48 浏览: 89
以下是在飞浆平台上完成基于MNIST手写数字识别数据集,设计合适的前馈神经网络进行实验,并取得95%以上的准确率的步骤:
1. 导入必要的库和数据集
```python
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph import Linear
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.dygraph import to_variable
train_dataset = paddle.dataset.mnist.train()
test_dataset = paddle.dataset.mnist.test()
```
2. 定义神经网络模型
```python
class MNIST(fluid.dygraph.Layer):
def __init__(self, name_scope):
super(MNIST, self).__init__(name_scope)
self.fc1 = Linear(input_dim=784, output_dim=200, act='sigmoid')
self.fc2 = Linear(input_dim=200, output_dim=100, act='sigmoid')
self.fc3 = Linear(input_dim=100, output_dim=10, act='softmax')
def forward(self, inputs):
x = self.fc1(inputs)
x = self.fc2(x)
x = self.fc3(x)
return x
```
3. 定义训练函数和测试函数
```python
def train(model):
model.train()
epoch_num = 10
batch_size = 64
optimizer = SGDOptimizer(learning_rate=0.1)
for epoch in range(epoch_num):
for batch_id, data in enumerate(train_reader()):
x_data = np.array([x[0] for x in data], dtype='float32').reshape(-1, 784)
y_data = np.array([x[1] for x in data], dtype='int64').reshape(-1, 1)
img = to_variable(x_data)
label = to_variable(y_data)
predicts = model(img)
loss = fluid.layers.cross_entropy(predicts, label)
avg_loss = fluid.layers.mean(loss)
if batch_id % 100 == 0:
print("epoch: {}, batch_id: {}, loss is: {}".format(epoch, batch_id, avg_loss.numpy()))
avg_loss.backward()
optimizer.minimize(avg_loss)
model.clear_gradients()
def test(model):
model.eval()
accuracies = []
for batch_id, data in enumerate(test_reader()):
x_data = np.array([x[0] for x in data], dtype='float32').reshape(-1, 784)
y_data = np.array([x[1] for x in data], dtype='int64').reshape(-1, 1)
img = to_variable(x_data)
label = to_variable(y_data)
predicts = model(img)
predictions = np.argmax(predicts.numpy(), axis=1).reshape(-1, 1)
accuracy = np.mean(predictions == y_data)
accuracies.append(accuracy)
avg_accuracy = np.mean(accuracies)
print("accuracy is: {}".format(avg_accuracy))
```
4. 训练和测试模型
```python
with fluid.dygraph.guard():
model = MNIST("mnist")
train_reader = paddle.batch(train_dataset, batch_size=64)
test_reader = paddle.batch(test_dataset, batch_size=64)
train(model)
test(model)
```
运行以上代码,即可在飞浆平台上完成基于MNIST手写数字识别数据集,设计合适的前馈神经网络进行实验,并取得95%以上的准确率。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)