internimage目标检测
时间: 2023-10-01 16:03:30 浏览: 188
目标检测的序列图像
InternImage 目标检测是一种基于卷积的基础模型,它使用可变形卷积作为核心算子,具有动态有效感受野和自适应空间聚合的能力。该模型以最大规模的 InternImage-H 为骨干网络,并使用 DINO 作为基础检测框架,在 Objects365 数据集上进行预训练,然后在 COCO 数据集上进行微调。该模型在 COCO 目标检测任务中取得了最优结果,达到了 65.4% 的 mAP,突破了 COCO 目标检测的性能边界。\[1\]\[3\]
#### 引用[.reference_title]
- *1* *3* [InternImage](https://blog.csdn.net/qq_29788741/article/details/127914084)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* [YoloV8改进策略:InternImage与YoloV8深度融合,动态卷积DCNv3大显神威](https://blog.csdn.net/m0_54864585/article/details/130681588)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文