搭建RoBERTa + BiLSTM + CRF模型的python代码
时间: 2024-12-06 22:33:16 浏览: 66
Pytorch实现基于BERT+ BiLSTM \ Roberta+CRF的命名实体识别项目源码 .zip文件
5星 · 资源好评率100%
在Python中搭建RoBERTa(Robustly Optimized BERT Pretraining Approach)+ BiLSTM (Bidirectional Long Short-Term Memory) + CRF (Conditional Random Field)模型通常用于序列标注任务,如命名实体识别(NER)。下面是一个简化版的示例,使用Hugging Face的Transformers库和Keras或PyTorch。这里假设你已经安装了transformers、torch等库。
**使用PyTorch的例子**:
```python
import torch
from torch import nn
from transformers import RobertaTokenizerFast, RobertaModel
class RoBERTaBiLSTMCRF(nn.Module):
def __init__(self, num_tags, roberta_model_name='roberta-base'):
super(RoBERTaBiLSTMCRF, self).__init__()
self.roberta = RobertaModel.from_pretrained(roberta_model_name)
self.dropout = nn.Dropout(0.5)
self.lstm = nn.LSTM(self.roberta.config.hidden_size, 128, bidirectional=True, batch_first=True)
self.linear = nn.Linear(256, num_tags) # 128 (forward) + 128 (backward)
self.crf = nn.CRF(num_tags, batch_first=True)
def forward(self, input_ids, attention_mask):
_, pooled_output = self.roberta(input_ids=input_ids, attention_mask=attention_mask)
pooled_output = self.dropout(pooled_output)
lstm_out, _ = self.lstm(pooled_output)
tag_space = self.linear(lstm_out[:, -1]) # 取最后一个时间步作为输入到线性层
crf_input = tag_space if not self.training else tag_space.view(-1, self.num_tags) # 如果在训练阶段,需要转为适合CRF的格式
return self.crf.decode(crf_input, attention_mask), crf_input
# 假设num_tags是你的标签数量,你可以根据实际数据创建model实例并训练
num_tags = ... # 例如,如果你有5个标签类别
model = RoBERTaBiLSTMCRF(num_tags)
```
**使用Keras的例子**:
```python
from transformers import TFAutoModel, Tokenizer
from tensorflow.keras.layers import Dense, Input, LSTM, Dropout
from tensorflow.keras.utils import Sequence
from tensorflow.keras.preprocessing.sequence import pad_sequences
class CRFWrapper(tf.keras.Model):
def __init__(self, crf, *args, **kwargs):
super().__init__(*args, **kwargs)
self.crf = crf
def call(self, inputs, mask=None):
features = inputs
emission_scores = self.crf.call(features)
viterbi_sequence, _ = self.crf.decode(emission_scores, mask)
return viterbi_sequence
# 假设你已经有了预训练的RoBERTa模型和Tokenizer
tokenizer = ...
roberta_model = ...
input_ids = ... # 输入的Token IDs
attention_mask = ... # 输入的注意力掩码
# 构建模型结构
input_ids = Input(shape=(None,), dtype=tf.int32, name="input_ids")
attention_mask = Input(shape=(None,), dtype=tf.int32, name="attention_mask")
sequence_output, _ = roberta_model(inputs=[input_ids, attention_mask])
lstm_output = LSTM(units=128, return_sequences=True)(sequence_output)
dropout_layer = Dropout(rate=0.5)(lstm_output)
linear_layer = Dense(units=num_tags)(dropout_layer)
crf = CRFWrapper(num_tags) # 需要自定义CRF层
output = crf(linear_layer)
model = tf.keras.Model(inputs=[input_ids, attention_mask], outputs=output)
# 训练模型
model.compile(optimizer="adam", loss=crf.loss_function, metrics=[crf.accuracy])
# 使用Sequence生成器适配batch训练
```
阅读全文