推导单臂相干探测,双臂相干探测的输出电流具体过程

时间: 2023-12-25 11:05:09 浏览: 29
单臂相干探测器是一种常见的光学探测器,它可以用来检测通过空间中传播的引力波信号。其输出电流的具体推导过程如下: 首先,将引力波信号与一个光学腔耦合,形成一个光学引擎。当引力波通过时,光学腔的长度会微小地改变,导致光路差发生变化。这个变化可以被转化成一个相位变化。 接下来,根据光学腔内的光强变化,可以计算出相位变化对应的电压。这个电压信号可以被放大,并经过一个低通滤波器以去除其他噪声。 最后,得到的电压信号就是单臂相干探测器的输出电流。 双臂相干探测器是另一种常见的光学探测器,其输出电流的具体推导过程与单臂相干探测器类似。不同之处在于,双臂相干探测器有两个光学腔,分别位于垂直于引力波传播方向的两个方向上。当引力波通过时,两个光学腔的长度会微小地改变,导致光路差发生变化。这个变化可以被转化成一个相位差变化。 接下来,根据两个光学腔内的光强变化,可以计算出相位差变化对应的电压。这个电压信号可以被放大,并经过一个低通滤波器以去除其他噪声。 最后,得到的电压信号就是双臂相干探测器的输出电流。
相关问题

推导单臂相干探测,双臂相干探测的输出电流

单臂相干探测器的输出电流可以通过以下步骤推导得到: 1. 光路中的激光光束经过分束器分为两路,经过反射镜反射后再次经过分束器,光束重新合并,形成干涉。 2. 在干涉过程中,由于相位差,光束的强度会发生变化,进而使得探测器的输出电流发生变化。 3. 在分束器之前,放置一个调制器,调制器的频率为 $\omega_m$,可以使得光束的强度随着时间发生变化。 4. 探测器的输出电流可以表示为: $$ i(t)=\frac{2P_0}{R}\cos(\omega_mt+\theta_0) $$ 其中,$P_0$ 是光路中激光的功率,$R$ 是探测器的灵敏度,$\theta_0$ 是干涉仪中的初始相位差。 双臂相干探测器的输出电流可以通过以下步骤推导得到: 1. 光路中的激光光束分为两条不同长度的臂,经过反射镜反射后重新回到分束器,形成干涉。 2. 在干涉过程中,由于相位差,光束的强度会发生变化,进而使得探测器的输出电流发生变化。 3. 在每条臂的结尾处,放置一个 Fabry-Perot 腔,可以增强光的反射和透射,进而增加灵敏度。 4. 探测器的输出电流可以表示为: $$ i(t)=\frac{2P_0}{R}\cos\left[\omega_m t+\phi_0+\frac{4\pi L}{\lambda}+\frac{\Delta L}{L}\cos(\omega_a t+\theta)\right] $$ 其中,$L$ 是臂的长度,$\Delta L$ 是两条臂的长度差,$\omega_a$ 是阿米巴频率,$\theta$ 是干涉仪中的相位差,$\phi_0$ 是干涉仪的初始相位差。

陀螺仪积分获取角度的具体公式和推导过程

陀螺仪积分获取角度的具体公式是:θ = ∫ωdt,其中θ表示角度,ω表示角速度,t表示时间,∫表示积分符号。 推导过程如下: 假设陀螺仪的输出为角速度ω,我们需要将其积分得到角度θ。根据微积分的定义,可以将时间t分成很多小段,每一小段的时间为Δt,对应的角速度为ωi,那么在这一小段时间内,角度的变化量为: Δθi = ωiΔt 将所有小段时间内的角度变化量相加,得到总的角度变化量: θ = ΣΔθi = ΣωiΔt 当Δt趋近于0时,上式变成积分形式: θ = ∫ωdt 这就是陀螺仪积分获取角度的具体公式。

相关推荐

最新推荐

recommend-type

彭曼公式推导(完整过程)

The Penman equation for estimating evaporation from an open pan of water was essentially derived from an energy balance that focuses on net radiation input (including solar and long-wave radiation) ...
recommend-type

Buck电路的小信号推导过程.doc

Buck电路的小信号推导过程doc,这篇文章应用了电感电流和电容电压在整个周期内的平均状态作为方程变量,推导出了小信号模式,有很好示范作用。
recommend-type

python列表推导式操作解析

主要介绍了python列表推导式操作解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
recommend-type

LLC串联谐振电路设计要点及公式推导.docx

要实现理想的软开关,最好的情况是使开关在电压和电流同时为零时关断和开通(ZVS,ZCS),这样损耗才会真正为零。要实现这个目标,必须采用谐振技术。LLC串联谐振电路设计要点及公式推导让有基础的人快速入门LLC电源...
recommend-type

神经网络参数更新公式推导(一).docx

主要介绍了单隐层网络的发展历程,发展期间遇到的问题机器解决方案,根据目标函数和网络结构列出其权重和阈值的递推公式,有助于加深对神经网络的理解,设计自己的网络或者目标函数。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。