tensorflow2.0训练mnist
时间: 2023-04-13 13:01:25 浏览: 129
首先,需要导入tensorflow2.0和mnist数据集:
```
import tensorflow as tf
from tensorflow.keras.datasets import mnist
```
然后,加载mnist数据集并进行预处理:
```
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
```
接下来,构建模型:
```
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
```
然后,编译模型并进行训练:
```
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
```
最后,评估模型并进行预测:
```
model.evaluate(x_test, y_test, verbose=2)
predictions = model.predict(x_test[:5])
print(np.argmax(predictions, axis=1))
print(y_test[:5])
```
阅读全文