C+-+2048+Game You+are+playing+a+variation+of+game+2048.+Intially+you+have+a+multisetsof+nintegers.
时间: 2024-03-01 17:47:17 浏览: 228
C++ 2048 Game是一种变体的2048游戏。初始时,你有一个包含n个整数的多重集合。
在游戏中,你需要使用C++编程语言来实现一个2048游戏。游戏的规则是将相同数字的方块合并在一起,直到达到2048或无法继续移动为止。
具体的实现方式可以包括以下几个步骤:
1. 创建一个n*n的游戏棋盘,用二维数组表示。
2. 在棋盘上随机生成两个数字方块,初始时这些数字方块的值是从给定的多重集合中选择的。
3. 接受玩家输入的移动指令(上、下、左、右),并根据指令移动数字方块。
4. 如果相邻的两个数字方块的值相同,它们将合并成一个新的数字方块,并更新分数。
5. 每次移动后,在空白位置上随机生成一个新的数字方块(2或4)。
6. 当棋盘上出现2048时,游戏胜利;当无法继续移动时,游戏结束。
你可以使用C++语言中的类和函数来实现游戏逻辑,例如使用类来表示数字方块和棋盘,使用函数来处理移动和合并操作。
相关问题
PCX1 = 1.5482 $Shape factor Cfx for longitudinal force PDX1 = 1.1632 $Longitudinal friction Mux at Fznom PDX2 = -0.11154 $Variation of friction Mux with load PDX3 = 0.94173 $Variation of friction Mux with camber squared PEX1 = 0.27 $Longitudinal curvature Efx at Fznom PEX2 = 0.011693 $Variation of curvature Efx with load PEX3 = 0.053303 $Variation of curvature Efx with load squared PEX4 = 0.59223 $Factor in curvature Efx while driving PKX1 = 32.9102 $Longitudinal slip stiffness Kfx/Fz at Fznom PKX2 = 12.7911 $Variation of slip stiffness Kfx/Fz with load PKX3 = -0.11254 $Exponent in slip stiffness Kfx/Fz with load PHX1 = -0.0017527 $Horizontal shift Shx at Fznom PHX2 = 0.00068824 $Variation of shift Shx with load PVX1 = 0.068079 $Vertical shift Svx/Fz at Fznom PVX2 = 0.0023429 $Variation of shift Svx/Fz with load PPX1 = -0.8733 $linear influence of inflation pressure on longitudinal slip stiffness PPX2 = 0.7035 $quadratic influence of inflation pressure on longitudinal slip stiffness PPX3 = -0.0080216 $linear influence of inflation pressure on peak longitudinal friction PPX4 = -0.47776 $quadratic influence of inflation pressure on peak longitudinal friction RBX1 = 18.3369 $Slope factor for combined slip Fx reduction RBX2 = 18.2559 $Variation of slope Fx reduction with kappa RBX3 = 607.8133 $Influence of camber on stiffness for Fx combined RCX1 = 0.96372 $Shape factor for combined slip Fx reduction REX1 = -1.2699 $Curvature factor of combined Fx REX2 = -0.14323 $Curvature factor of combined Fx with load RHX1 = 0.0037359 $Shift factor for combined slip Fx reduction帮我做成表格
| 参数 | 值 |
| --- | --- |
| PCX1 | 1.5482 |
| PDX1 | 1.1632 |
| PDX2 | -0.11154 |
| PDX3 | 0.94173 |
| PEX1 | 0.27 |
| PEX2 | 0.011693 |
| PEX3 | 0.053303 |
| PEX4 | 0.59223 |
| PKX1 | 32.9102 |
| PKX2 | 12.7911 |
| PKX3 | -0.11254 |
| PHX1 | -0.0017527 |
| PHX2 | 0.00068824 |
| PVX1 | 0.068079 |
| PVX2 | 0.0023429 |
| PPX1 | -0.8733 |
| PPX2 | 0.7035 |
| PPX3 | -0.0080216 |
| PPX4 | -0.47776 |
| RBX1 | 18.3369 |
| RBX2 | 18.2559 |
| RBX3 | 607.8133 |
| RCX1 | 0.96372 |
| REX1 | -1.2699 |
| REX2 | -0.14323 |
| RHX1 | 0.0037359 |
解释这段代码:clear clc warning off; path = pwd; addpath(genpath(path)); dataName{1} = 'flower17'; for name = 1 load(['./',dataName{name},'_Kmatrix']); Y(Y==-1)=2; numclass = length(unique(Y)); numker = size(KH,3); num = size(KH,1); KH = remove_large(KH); KH = knorm(KH); KH = kcenter(KH); KH = divide_std(KH); % KH(KH<0) = 0; options.seuildiffsigma=1e-4; % stopping criterion for weight variation %------------------------------------------------------ % Setting some numerical parameters %------------------------------------------------------ options.goldensearch_deltmax=1e-1; % initial precision of golden section search options.numericalprecision=1e-16; % numerical precision weights below this value % are set to zero %------------------------------------------------------ % some algorithms paramaters %------------------------------------------------------ options.firstbasevariable='first'; % tie breaking method for choosing the base % variable in the reduced gradient method options.nbitermax=500; % maximal number of iteration options.seuil=0; % forcing to zero weights lower than this options.seuilitermax=10; % value, for iterations lower than this one options.miniter=0; % minimal number of iterations options.threshold = 1e-4; % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qnorm = 2; [S,Sigma,obj] = graph_minmax(KH, options); S1 = (S + S') / 2; D = diag(1 ./ sqrt(sum(S1))); L = D * S1 * D; [H,~] = eigs(L, numclass, 'LA'); res= myNMIACC(H,Y,numclass); disp(res); end
这段代码主要是用于处理图像分类数据,并使用图最小最大化算法进行图像分类。下面是对代码的解释:
1. `clear clc warning off;`: 清空命令行窗口并关闭警告信息;
2. `path = pwd; addpath(genpath(path));`: 将当前路径及其子文件夹添加到MATLAB搜索路径中;
3. `dataName{1} = 'flower17';`: 设置图像数据集的名称,此处为flower17;
4. `for name = 1`: 循环遍历数据集中的每个图像;
5. `load(['./',dataName{name},'_Kmatrix']);`: 加载预处理后的图像数据,其中_Kmatrix是图像的相似性矩阵,保存在.mat文件中;
6. `Y(Y==-1)=2;`: 将标签中的-1替换为2,以便后续处理;
7. `numclass = length(unique(Y));`: 计算图像数据集中的类别数;
8. `numker = size(KH,3); num = size(KH,1);`: 计算图像相似性矩阵的大小,其中numker为矩阵的张数,num为矩阵的行数;
9. `KH = remove_large(KH); KH = knorm(KH); KH = kcenter(KH); KH = divide_std(KH);`: 对图像相似性矩阵进行预处理,包括去除异常值、归一化、中心化、标准化等;
10. `options.seuildiffsigma=1e-4;`: 设置图最小最大化算法的参数,即权重变化的停止条件;
11. `options.goldensearch_deltmax=1e-1; options.numericalprecision=1e-16;`: 设置算法的一些数值参数,包括黄金分割法的初始精度和权重的数值精度;
12. `options.firstbasevariable='first'; options.nbitermax=500; options.seuil=0; options.seuilitermax=10; options.miniter=0;`: 设置算法的一些参数,包括选择基础变量的方法、最大迭代次数、权重阈值、迭代次数阈值等;
13. `options.threshold = 1e-4;`: 设置算法的收敛阈值;
14. `qnorm = 2;`: 计算范数,一般默认为2;
15. `[S,Sigma,obj] = graph_minmax(KH, options);`: 使用图最小最大化算法对图像相似性矩阵进行聚类,并返回聚类结果;
16. `S1 = (S + S') / 2; D = diag(1 ./ sqrt(sum(S1))); L = D * S1 * D;`: 将聚类结果转化为拉普拉斯矩阵,其中D为度矩阵,S1为对称邻接矩阵;
17. `[H,~] = eigs(L, numclass, 'LA');`: 对拉普拉斯矩阵进行特征值分解,获取特征向量;
18. `res= myNMIACC(H,Y,numclass);`: 计算分类精度;
19. `disp(res);`: 显示分类精度结果。
阅读全文