请给出matlab实现以下问题的代码:取h = 0.2,分别用欧拉公式、隐式欧拉法和改进欧拉法解微分方程并比较精度。已知条件为:①当0<=x<=1时,y'=y-(2*x-y)②y(0)=1)③微分方程解析解为y = sqrt(1+2*x)
时间: 2023-11-26 10:06:45 浏览: 204
以下是matlab实现的代码:
```matlab
% 定义微分方程dy/dx
dydx = @(x,y) y - (2*x - y);
% 定义取值范围和步长
x = 0:0.2:1;
h = 0.2;
% 定义初始值
y_euler = zeros(size(x));
y_implicit_euler = zeros(size(x));
y_improved_euler = zeros(size(x));
y_euler(1) = 1;
y_implicit_euler(1) = 1;
y_improved_euler(1) = 1;
% 欧拉公式
for i = 2:length(x)
y_euler(i) = y_euler(i-1) + h * dydx(x(i-1), y_euler(i-1));
end
% 隐式欧拉法
for i = 2:length(x)
f = @(y) y - y_implicit_euler(i-1) - h * dydx(x(i), y);
y_implicit_euler(i) = fzero(f, y_implicit_euler(i-1));
end
% 改进欧拉法
for i = 2:length(x)
y_predict = y_improved_euler(i-1) + h * dydx(x(i-1), y_improved_euler(i-1));
f = @(y) y - y_improved_euler(i-1) - (h/2) * (dydx(x(i-1), y_improved_euler(i-1)) + dydx(x(i), y));
y_improved_euler(i) = fzero(f, y_predict);
end
% 输出结果并绘图
y_exact = sqrt(1 + 2*x);
fprintf("欧拉公式误差:%f\n", max(abs(y_euler - y_exact)));
fprintf("隐式欧拉法误差:%f\n", max(abs(y_implicit_euler - y_exact)));
fprintf("改进欧拉法误差:%f\n", max(abs(y_improved_euler - y_exact)));
plot(x, y_exact, '-k', x, y_euler, '-r', x, y_implicit_euler, '-g', x, y_improved_euler, '-b');
legend('解析解', '欧拉公式', '隐式欧拉法', '改进欧拉法');
xlabel('x');
ylabel('y');
```
运行后,程序会输出三种方法的最大误差,并且绘制出解析解和三种方法的图像。
阅读全文