用python实现一个深度强化学习的demo
时间: 2023-07-19 10:46:45 浏览: 184
深度学习入门 基于Python的理论与实现
好的,我可以为您提供一个简单的深度强化学习的demo,使用Python编写,基于OpenAI Gym环境和TensorFlow深度学习框架。以下是详细步骤:
1. 安装依赖库
```
pip install gym tensorflow
```
2. 导入必要的库
```python
import gym
import tensorflow as tf
import numpy as np
```
3. 定义深度强化学习模型
```python
class DQN:
def __init__(self, env, hidden_size=16, lr=0.01, gamma=0.99):
self.env = env
self.obs_size = env.observation_space.shape[0]
self.action_size = env.action_space.n
self.hidden_size = hidden_size
self.lr = lr
self.gamma = gamma
self.model = tf.keras.Sequential([
tf.keras.layers.Dense(self.hidden_size, activation='relu', input_shape=(self.obs_size,)),
tf.keras.layers.Dense(self.hidden_size, activation='relu'),
tf.keras.layers.Dense(self.action_size)
])
self.optimizer = tf.keras.optimizers.Adam(learning_rate=self.lr)
self.loss_fn = tf.keras.losses.MeanSquaredError()
def predict(self, obs):
return self.model.predict(obs)
def train(self, obs, q_values):
with tf.GradientTape() as tape:
q_values_pred = self.model(obs)
loss = self.loss_fn(q_values, q_values_pred)
grads = tape.gradient(loss, self.model.trainable_variables)
self.optimizer.apply_gradients(zip(grads, self.model.trainable_variables))
def get_action(self, obs, epsilon=0.0):
if np.random.random() < epsilon:
return np.random.choice(self.action_size)
else:
q_values = self.predict(obs)
return np.argmax(q_values)
```
4. 定义训练函数
```python
def train_dqn(env, dqn, num_episodes=1000, batch_size=32):
for episode in range(num_episodes):
obs = env.reset()
done = False
total_reward = 0.0
while not done:
action = dqn.get_action(obs, epsilon=0.1)
next_obs, reward, done, _ = env.step(action)
total_reward += reward
q_values = dqn.predict(obs[np.newaxis])
next_q_values = dqn.predict(next_obs[np.newaxis])
max_next_q_value = np.max(next_q_values)
q_values[0, action] = reward + dqn.gamma * max_next_q_value
dqn.train(obs[np.newaxis], q_values[np.newaxis])
obs = next_obs
if (episode + 1) % 100 == 0:
print("Episode:", episode + 1, "Total reward:", total_reward)
```
5. 创建环境和模型,开始训练
```python
env = gym.make("CartPole-v0")
dqn = DQN(env)
train_dqn(env, dqn)
```
在训练完成后,您可以使用以下代码来测试模型:
```python
obs = env.reset()
done = False
total_reward = 0.0
while not done:
env.render()
action = dqn.get_action(obs)
obs, reward, done, _ = env.step(action)
total_reward += reward
print("Total reward:", total_reward)
env.close()
```
这是一个简单的深度强化学习的demo,它使用DQN算法在CartPole游戏中训练一个智能体。您可以根据需要进行修改和优化,以适应其他环境和任务。
阅读全文