h=(randn(h_length,nr,nt)+1j *randn(h_length,nr,nt))/sqrt(2)/sqrt(h_length);

时间: 2024-06-03 19:13:23 浏览: 14
这行代码是在生成一个三维的复高斯随机矩阵h,其中h_length是矩阵h的第一维长度,nr是矩阵h的第二维长度,nt是矩阵h的第三维长度。这里使用了randn函数生成高斯分布的实数部分和虚数部分,然后乘以1j将实数部分转换为虚数部分,最后除以sqrt(2)和sqrt(h_length)将矩阵h的元素值限制在[-1,1]之间,并保证整个矩阵h的能量为1。
相关问题

clear; close all; clc; q=1.6e-19; Ib=202e-6; N0=2*q*Ib; Rb=1e6; Tb=1/Rb; R=1; sig_length=1e6; D=5; c=0.15; nt=0.1289; nr=0.9500; N = 10^5; Eb_N0_dB = 1:15; Eb_N0 = 10.^(Eb_N0_dB./10); M = 4; k = 2; s0 = [1 0 0 0]; s1 = [0 1 0 0]; s2 = [0 0 1 0]; s3 = [0 0 0 1]; alpha = [1 2 3 4]; for ii = 1:length(Eb_N0) transmit = randsrc(1,N,alpha); receive = zeros(1,N); P_avg(ii)=sqrt(N0*Rb*Eb_N0(ii)/(2*R^2)); i_peak(ii)=2*R*P_avg(ii); Ep(ii)=i_peak(ii)^2*Tb; sgma(ii)=sqrt(N0*Ep(ii)/2); th=0.5*Ep(ii); for jj = 1:length(transmit) y = zeros(1,4); if transmit(jj) == 1 y =nt*nr.*s0.*exp(-c*D)+sgma(ii)*randn(size(s2)); elseif transmit(jj) == 2 y = nt*nr.*s1.*exp(-c*D)+sgma(ii)*randn(size(s2)); elseif transmit(jj) == 3 y = nt*nr.*s2.*exp(-c*D)+sgma(ii)*randn(size(s2)); elseif transmit(jj) == 4 y = nt*nr.*s3.*exp(-c*D)+sgma(ii)*randn(size(s2)); end y(find(y>th))=1; cmetrics = [dot(y,s0) dot(y,s1) dot(y,s2) dot(y,s3)]; [C, receiveindex] = max(cmetrics); receive(jj) = receiveindex; end errorCount(ii) = nnz([receive - transmit]); end totalError = errorCount/N代码逐句解释

这段代码实现了一个基本的QPSK数字通信系统的仿真,其中QPSK是一种调制方式,将数字信息编码成一个复数信号,其中每个复数点代表两个比特(bit)的信息。下面对代码逐句解释: ``` clear; close all; clc; ``` 清空变量,关闭所有的图形窗口,清空命令行窗口。 ``` q=1.6e-19; Ib=202e-6; N0=2*q*Ib; Rb=1e6; Tb=1/Rb; R=1; sig_length=1e6; D=5; c=0.15; ``` 定义常量,包括电子电荷q、电流Ib、噪声功率谱密度N0、码率Rb、码元时间Tb、电阻R、信号长度sig_length、传播距离D和损耗系数c。 ``` nt=0.1289; nr=0.9500; N = 10^5; Eb_N0_dB = 1:15; Eb_N0 = 10.^(Eb_N0_dB./10); M = 4; k = 2; ``` 定义常量,包括发射端天线增益nt、接收端天线增益nr、发送比特数N、信号能量与噪声功率比Eb/N0(单位为分贝)、调制方式M(这里为QPSK)和每个符号所代表的比特数k。 ``` s0 = [1 0 0 0]; s1 = [0 1 0 0]; s2 = [0 0 1 0]; s3 = [0 0 0 1]; alpha = [1 2 3 4]; ``` 定义4个QPSK调制点,每个点代表两个比特,因此一个符号可以代表4个比特。alpha定义了4个调制点所对应的整数值,分别是1、2、3、4。 ``` for ii = 1:length(Eb_N0) ``` 循环,从Eb/N0的最小值开始,逐渐增加。 ``` transmit = randsrc(1,N,alpha); ``` 产生长度为N的随机整数向量,取值为alpha中的四个整数。 ``` receive = zeros(1,N); ``` 初始化接收向量。 ``` P_avg(ii)=sqrt(N0*Rb*Eb_N0(ii)/(2*R^2)); ``` 计算平均功率。 ``` i_peak(ii)=2*R*P_avg(ii); ``` 计算峰值电流。 ``` Ep(ii)=i_peak(ii)^2*Tb; ``` 计算每个符号的能量。 ``` sgma(ii)=sqrt(N0*Ep(ii)/2); ``` 计算噪声标准差。 ``` th=0.5*Ep(ii); ``` 计算判决门限。 ``` for jj = 1:length(transmit) ``` 循环,处理每个发送比特。 ``` y = zeros(1,4); ``` 初始化接收信号向量。 ``` if transmit(jj) == 1 y =nt*nr.*s0.*exp(-c*D)+sgma(ii)*randn(size(s2)); elseif transmit(jj) == 2 y = nt*nr.*s1.*exp(-c*D)+sgma(ii)*randn(size(s2)); elseif transmit(jj) == 3 y = nt*nr.*s2.*exp(-c*D)+sgma(ii)*randn(size(s2)); elseif transmit(jj) == 4 y = nt*nr.*s3.*exp(-c*D)+sgma(ii)*randn(size(s2)); end ``` 模拟信号在传输过程中的衰减和噪声影响。 ``` y(find(y>th))=1; ``` 判决,如果接收信号大于判决门限,则判定为1。 ``` cmetrics = [dot(y,s0) dot(y,s1) dot(y,s2) dot(y,s3)]; ``` 计算接收信号与四个调制点之间的相关性。 ``` [C, receiveindex] = max(cmetrics); ``` 找到相关性最大的调制点。 ``` receive(jj) = receiveindex; ``` 记录接收到的比特值。 ``` end ``` 处理完一个符号,继续处理下一个符号。 ``` errorCount(ii) = nnz([receive - transmit]); ``` 计算误比特率。 ``` end ``` 处理完所有的Eb/N0值。 ``` totalError = errorCount/N ``` 计算误比特率。

OFDM-MIMO多径信道的LS估计,绘制MSE与信噪比的关系图的代码

以下是基于MATLAB的OFDM-MIMO多径信道LS估计,绘制MSE与信噪比关系图的代码: ```matlab clear all; close all; % 设置参数 M = 4; % 调制阶数 Nt = 2; % 发射天线数 Nr = 2; % 接收天线数 SNR_dB = 0:5:30; % 信噪比范围 numIter = 1000; % 模拟次数 num_tap = 4; % 多径信道时延数 num_subcarrier = 64; % 子载波数 % 生成QPSK调制信号 data = randi([0 M-1], Nt, num_subcarrier); % 构造发送信号 x = qammod(data, M); % 构建MIMO多径信道 for i = 1:length(SNR_dB) SNR = 10^(SNR_dB(i)/10); h = zeros(Nr, Nt, num_tap); for j = 1:num_tap h(:,:,j) = (randn(Nr, Nt) + 1j*randn(Nr, Nt))/sqrt(2); end n = sqrt(1/SNR)*(randn(Nr, num_subcarrier, num_tap) + 1j*randn(Nr, num_subcarrier, num_tap))/sqrt(2); y_tmp = zeros(Nr, num_subcarrier, num_tap); for j = 1:num_tap y_tmp(:,:,j) = squeeze(h(:,:,j))*x(:,:,j) + squeeze(n(:,:,j)); end y(:,:,i) = sum(y_tmp, 3); H(:,:,i) = squeeze(sum(h, 3)); end % LS信道估计 H_LS = zeros(Nr, Nt, num_subcarrier, length(SNR_dB)); for i = 1:length(SNR_dB) for j = 1:num_subcarrier H_LS(:,:,j,i) = y(:,j,i)*x(:,j,i)'/(x(:,j,i)*x(:,j,i)'); end end % 计算MSE MSE_LS = zeros(length(SNR_dB), 1); for i = 1:length(SNR_dB) for j = 1:num_subcarrier for k = 1:numIter noise = sqrt(1/SNR)*(randn(Nr, 1) + 1j*randn(Nr, 1))/sqrt(2); H_est = y(:,j,i)*x(:,j,i)'/(x(:,j,i)*x(:,j,i)'); MSE_LS(i) = MSE_LS(i) + norm(H(:,:,i) - H_est, 'fro')^2; end end end MSE_LS = MSE_LS/numIter/num_subcarrier; % 绘制MSE与信噪比关系图 figure; semilogy(SNR_dB, MSE_LS, 'r-o'); title('LS信道估计MSE与信噪比关系图'); xlabel('信噪比 (dB)'); ylabel('MSE'); grid on; ``` 该代码使用LS算法对OFDM-MIMO多径信道进行信道估计,并绘制了MSE与信噪比之间的关系图。

相关推荐

最新推荐

recommend-type

C++实现的俄罗斯方块游戏

一个简单的俄罗斯方块游戏的C++实现,涉及基本的游戏逻辑和控制。这个示例包括了初始化、显示、移动、旋转和消除方块等基本功能。 主要文件 main.cpp:包含主函数和游戏循环。 tetris.h:包含游戏逻辑的头文件。 tetris.cpp:包含游戏逻辑的实现文件。 运行说明 确保安装SFML库,以便进行窗口绘制和用户输入处理。
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠

![STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-c138c506ec1b17b643c23c4884fd9882.png) # 1. STM32单片机小车硬件优化策略概述 STM32单片机小车在实际应用中,硬件优化至关重要。本文将深入探讨STM32单片机小车硬件优化策略,从硬件设计、元器件选型、安装、调试、可靠性到维护等方面进行全面的分析,旨在帮助开发者提升小车的性能、稳定性和使用寿命。 # 2. 硬件设计优化 硬件设计优化是S
recommend-type

android studio购物车源码

在Android Studio中,购物车功能通常涉及到一个应用中的UI设计、数据管理、以及可能的网络请求。源码通常包含以下几个主要部分: 1. **UI组件**:如RecyclerView用于展示商品列表,每个商品项可能是Adapter中的ViewHolder。会有一个添加到购物车按钮和一个展示当前购物车内容的部分。 2. **数据模型**:商品类(通常包含商品信息如名称、价格、图片等)、购物车类(可能存储商品列表、总价等)。 3. **添加/删除操作**:在用户点击添加到购物车时,会处理商品的添加逻辑,并可能更新数据库或缓存。 4. **数据库管理**:使用SQLite或其他持久化解
recommend-type

数据结构课程设计:电梯模拟与程序实现

"该资源是山东理工大学计算机学院的一份数据结构课程设计,主题为电梯模拟,旨在帮助学生深化对数据结构的理解,并通过实际编程提升技能。这份文档包含了设计任务的详细说明、进度安排、参考资料以及成绩评定标准。" 在这次课程设计中,学生们需要通过电梯模拟的案例来学习和应用数据结构。电梯模拟的目标是让学生们: 1. 熟练掌握如数组、链表、栈、队列等基本数据结构的操作。 2. 学会根据具体问题选择合适的数据结构,设计算法,解决实际问题。 3. 编写代码实现电梯模拟系统,包括电梯的调度、乘客请求处理等功能。 设计进度分为以下几个阶段: - 2013年1月7日:收集文献资料,完成系统分析。 - 2013年1月10日:创建相关数据结构,开始编写源程序。 - 2013年1月13日:调试程序,记录问题,初步完成课程设计报告。 - 2013年1月15日:提交课程设计报告打印版,进行答辩。 - 2013年1月16日:提交电子版报告和源代码。 参考文献包括了严蔚敏的《数据结构》和《数据结构题集》,谭浩强的《C语言程序设计》以及与所选编程环境相关的C或C++资料,这些都是进行课程设计的重要参考资料。 在成绩评定部分,设计成绩由指导教师填写,并需要在设计结束后进行总结与心得的撰写,这有助于学生反思学习过程,提炼经验。 整个课程设计涵盖了从问题分析、设计、实现到测试的完整过程,对于提升学生的编程能力和问题解决能力具有重要意义。《数据结构》课程是计算机科学教育的基础,通过这样的实践项目,学生们能够更好地理解和运用所学知识,为未来的专业发展打下坚实基础。