dsp28069芯片资料

时间: 2023-07-28 07:04:03 浏览: 41
DSP28069是德州仪器公司生产的一款高性能数字信号处理器芯片。它采用了32位浮点核心和高速工作频率,可以广泛应用于各种实时信号处理应用,如工业控制、电力电子和汽车电子等领域。 DSP28069芯片具有丰富的外设接口和功能,包括多个通用输入输出引脚、多个串行通信接口、模拟输入输出引脚和高速外设连接引脚等。这些接口可以与外部设备进行通信和数据交换,实现灵活的系统设计和集成。 此外,DSP28069还具有丰富的片内资源,包括大容量的闪存和RAM,用于存储程序代码和数据;高速的时钟和计时器,用于实时控制和同步操作;以及多个模数转换器,用于数字信号的采样和处理。 DSP28069芯片支持多种编程和开发工具,如CCS开发环境和TMS320C2000实时操作系统等,使用户可以轻松开发和调试应用程序。此外,德州仪器还提供了丰富的技术资料和开发文档,帮助用户更好地理解和应用该芯片。 总之,DSP28069芯片是一款功能强大、性能稳定的数字信号处理器。它具有丰富的外设接口和片内资源,能够满足各种实时信号处理应用的需求。通过使用相关的编程和开发工具,用户可以实现快速、高效的应用程序开发。
相关问题

dsp专用芯片什么特点

DSP专用芯片的特点包括: 1. 高效的数字信号处理能力:DSP专用芯片具有高效的数字信号处理能力,能够快速处理复杂的数字信号。 2. 稳定的性能:DSP专用芯片的性能稳定,能够在不同的环境和应用场景下保持一致的性能表现。 3. 低功耗:DSP专用芯片的功耗相对较低,适合在移动设备、嵌入式系统等场景下使用。 4. 丰富的功能:DSP专用芯片支持多种数字信号处理算法和功能,包括滤波、FFT、卷积、乘积累加等。 5. 易于编程和开发:DSP专用芯片通常具有完善的开发工具和编程环境,便于开发人员进行软件开发和调试。 6. 高度可定制化:DSP专用芯片能够根据不同的应用需求进行定制化设计,以满足不同领域和应用的需求。

dsp芯片485通讯例程

DSP芯片是一种数字信号处理器,它具有强大的数字信号处理能力和高速数据处理能力。而485通讯例程是一种用于实现RS485通信协议的软件程序。RS485通信协议是一种常用的串行通信协议,它可以在远距离、高速和高可靠性的环境中进行数据传输。 DSP芯片的485通讯例程是为了在DSP芯片上实现485通信功能而开发的软件程序。通常这个例程包括对485通信硬件的初始化配置、数据的发送和接收、错误处理等功能。通过使用这个例程,DSP芯片可以与其他设备进行双向数据传输,实现远程监测、数据采集、控制等功能。 在485通讯例程中,首先需要对DSP芯片的UART硬件模块进行配置,设置波特率、数据位、停止位等通信参数。然后通过程序控制发送和接收缓冲区,实现数据的发送和接收。在发送数据时,例程会对待发送的数据进行拆分和打包,并通过UART发送出去;在接收数据时,例程会监听UART接收缓冲区,当接收到完整的数据包时进行解析和处理。 为了保证数据的可靠传输,例程还包括了错误处理功能。当发送或接收过程中出现错误时,例程会进行错误检测并进行相应的处理,比如重新发送数据或报错提示。 DSP芯片485通讯例程的开发需要考虑到485通信协议的具体要求和DSP芯片的特性,编写高效可靠的代码,并经过严格的测试和验证。只有符合485通信协议标准并能够适应不同环境和应用场景的例程才能够在实际应用中发挥稳定和可靠的作用。

相关推荐

DSP(数字信号处理器)芯片是一种专门用于处理数字信号的集成电路。它能够高效地执行数字信号处理算法,主要应用在音频处理、图像处理、通信系统等领域。 DSP芯片的选型需要考虑以下几个因素: 1. 性能要求:首先需要根据具体应用的需求确定所需的性能指标,如运算速度、处理能力和存储容量等。根据不同的应用场景,选取相应的性能要求。 2. 能耗和功耗:DSP芯片一般用于嵌入式系统和移动设备中,因此能耗和功耗是选型中重要考虑因素。需要选择低功耗、高效能的芯片,以满足嵌入式设备的要求。 3. 软件支持:DSP芯片的选型要考虑其软件生态系统的支持程度。选择有成熟开发套件和广泛应用案例的芯片,可以提供更好的软件支持和开发生态。 4. 接口和外设:根据应用需求,需要选择具备符合要求的接口和外设的芯片。如需要进行音频输入输出处理的应用,需要选择带有音频接口的芯片。 5. 成本和可靠性:成本和可靠性也是选型的重要因素。根据项目预算限制选择性价比高的芯片,并考虑芯片的可靠性和长期供货保障。 综上所述,DSP芯片作为一种专门用于数字信号处理的集成电路,选型需要考虑性能要求、能耗功耗、软件支持、接口外设以及成本和可靠性等多个因素。根据具体应用的需求进行选择,以满足系统性能和成本要求。
### 回答1: DSP28335是德州仪器公司推出的数字信号处理器芯片,采用32位浮点运算,内置多种外设模块,包括ADC、PWM、CAN、SPI、I2C、SCI等,可广泛应用于电子测量、工业自动化、通信等领域。相比于传统的单片机,DSP芯片具有更高的速度和更强的处理能力,能够快速地完成复杂的数字信号处理任务。 针对DSP28335这款芯片,国内外都有大量的中文资料供学习者参考。从官方角度来看,德州仪器公司提供了一系列的DSP教程,包括基础理论、软件开发以及硬件设计等内容。此外,德州仪器公司的中国官网也提供了相关的中文技术支持,方便用户在使用过程中遇到问题时进行咨询和求助。 除了官方资料外,国内有很多DSP的培训机构和博客提供了大量的中文资料,包括DSP的原理、应用以及开发过程中可能遇到的各种问题的解决方法等。这些资料内容详实,深入浅出,适合初学者快速入门,也能满足更高层次用户的需求。 总之,DSP28335这款芯片在学习和应用中都有着广泛的中文资料供用户参考,利用这些资料,我们可以更好更快地掌握DSP的开发方法和技巧,从而将其应用到实际的工程中。 ### 回答2: DSP28335是一种高性能数字信号处理器,它广泛应用于工农业、医疗、通信等领域。该芯片基于TI公司的32位浮点数字信号处理器内核,具有高速低功耗、集成度高等优势。同时,该处理器还采用了先进的DMA控制、快速中断响应等技术,保证其在不同应用场景下具有稳定性和可靠性。 针对DSP28335芯片使用和开发的需求,有许多中文资料可供参考。其中包括TI公司官方手册和应用笔记,以及各种技术博客和论坛文章。通过阅读这些中文资料,用户可以了解DSP28335的各种特性和编程方法,掌握其在不同应用场景下的使用技巧。 需要注意的是,由于DSP28335是一款比较高级的处理器,因此使用和开发过程中需要一定的学习和实践成本。在使用该芯片时,用户需要有一定的数字信号处理和嵌入式系统相关知识,并熟悉C语言、汇编语言等编程语言。因此,为了更好地利用DSP28335这一优秀的数字信号处理器,用户需要花费一定的精力来学习和掌握相关知识和技能。 ### 回答3: DSP28335是德州仪器公司TMS320F28335系列数字信号处理器产品中的一种。它是一款高性能、低功耗的32位RISC处理器,适用于工业自动化、电力电子、航空航天、医疗器械等领域。DSP28335具有丰富的外设资源,包括多个PWM输出、多个ADC采集输入、以太网接口、CAN总线接口等,可以满足各种实际应用需求。 关于DSP28335的中文资料,目前已有较为详细的技术资料、手册、应用笔记等。用户可以在德州仪器官方网站或者其他技术网站上下载相关的中文资料。在使用DSP28335之前,建议用户先仔细阅读相关资料,了解其基本原理和特性,然后再进行具体的开发和应用。 此外,针对DSP28335的编程工具和软件也有中文版本,如CCS、Code Composer Studio等,用户可以选择下载并安装使用。总之,DSP28335的中文资料资源较为丰富,可以帮助用户更好地使用和开发这一产品。
以下是基于DSP28335芯片的ADC采样的代码示例: c #include "DSP2833x_Device.h" #include "DSP2833x_Examples.h" #define ADC_usDELAY 5000L void InitAdc(void); void AdcOffsetSelfCal(void); void AdcConversion(void); void main(void) { InitSysCtrl(); InitAdc(); AdcOffsetSelfCal(); while(1) { AdcConversion(); } } void InitAdc(void) { EALLOW; SysCtrlRegs.PCLKCR0.bit.ADCENCLK = 1; // ADC时钟使能 AdcRegs.ADCTRL1.bit.RESET = 1; // ADC模块复位 AdcRegs.ADCTRL1.bit.SUSMOD = 3; // ADC暂停模式 AdcRegs.ADCTRL3.bit.ADCCLKPS = 0; // ADC时钟预分频 AdcRegs.ADCTRL3.bit.ADCEXTSOC = 0; // 内部触发 AdcRegs.ADCMAXCONV.all = 0; // 最大转换数 AdcRegs.ADCCTRL2.bit.ADCNONOVERLAP = 1; // 使能非重叠模式 AdcRegs.ADCCTRL2.bit.INTPULSEPOS = 1; // 中断脉冲位置 AdcRegs.ADCTRL1.bit.ACQPS = 14; // 采样保持时间 EDIS; } void AdcOffsetSelfCal(void) { EALLOW; AdcRegs.ADCCTL1.bit.ADCREFSEL = 0; // 内部参考电压为AVREF+ AdcRegs.ADCCTL1.bit.ADCBGPWD = 1; // 开启参考电压缓冲区 AdcRegs.ADCCTL1.bit.ADCPWDN = 1; // 电源使能 AdcRegs.ADCCTL1.bit.ADCENABLE = 1; // ADC使能 AdcRegs.ADCSOC0CTL.bit.CHSEL = 0; // 选择ADCINA0信号源 AdcRegs.ADCSOC0CTL.bit.TRIGSEL = 0xF; // 选择软件触发 AdcRegs.ADCSOC0CTL.bit.ACQPS = 14; // 采样保持时间 AdcRegs.ADCSOC0CTL.bit.SEQCTRL = 1; // 自校正序列 AdcRegs.ADCINTSEL1N2.bit.INT1SEL = 0; // EOC0中断 AdcRegs.ADCINTSEL1N2.bit.INT1E = 1; // 使能EOC0中断 AdcRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; // 清除EOC0标志位 AdcRegs.ADCSOCFRC1.all = 0x0001; // 启动SOC0 while(AdcRegs.ADCINTFLG.bit.ADCINT1 == 0); // 等待EOC0中断 AdcRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; // 清除EOC0标志位 AdcRegs.ADCOFFTRIM.all = AdcRegs.ADCOFFTRIM.all; // 写入校准值 EDIS; } void AdcConversion(void) { EALLOW; AdcRegs.ADCSOC0CTL.bit.CHSEL = 0; // 选择ADCINA0信号源 AdcRegs.ADCSOC0CTL.bit.TRIGSEL = 0xF; // 选择软件触发 AdcRegs.ADCSOC0CTL.bit.ACQPS = 14; // 采样保持时间 AdcRegs.ADCSOC0CTL.bit.SEQCTRL = 0; // 普通序列 AdcRegs.ADCINTSEL1N2.bit.INT1SEL = 0; // EOC0中断 AdcRegs.ADCINTSEL1N2.bit.INT1E = 1; // 使能EOC0中断 AdcRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; // 清除EOC0标志位 AdcRegs.ADCSOCFRC1.all = 0x0001; // 启动SOC0 while(AdcRegs.ADCINTFLG.bit.ADCINT1 == 0); // 等待EOC0中断 AdcRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; // 清除EOC0标志位 Uint16 adc_result = AdcRegs.ADCRESULT0; // 读取ADC结果 EDIS; } 这段代码中,InitAdc()函数初始化ADC模块的各项参数;AdcOffsetSelfCal()函数进行ADC的自校准;AdcConversion()函数进行ADC的转换并读取结果。需要注意的是,ADC的转换需要一定的时间,因此需要等待转换完成后再读取结果。
### 回答1: 步进电机DSP芯片的开发主要涉及硬件设计、固件开发和测试验证三个步骤。 在硬件设计阶段,首先需要根据步进电机的特性和要求选择合适的DSP芯片,并进行原理图设计和布局。在原理图设计中,需要包括DSP芯片及其相关外设电路的连接,如电源电路、时钟电路、驱动电路等。布局设计需要合理布置电路,在电源电路和信号线之间留足足够的距离,避免干扰和干涉。完成后,通过打样、生产、测试等环节,制作出DSP芯片的相关硬件。 固件开发阶段,需要对DSP芯片进行编程。首先,需要根据步进电机的运行特性,编写相应的驱动程序,包括控制电机转动方向、步长、速度等功能。然后,将编写好的程序通过开发工具烧录到DSP芯片中。同时,还需要编写与外设的通信程序,实现DSP芯片与其他设备的数据传输和控制。最后,通过调试和测试,确保固件程序的正确性和稳定性。 在测试验证阶段,需要对开发好的DSP芯片进行功能验证和性能测试。通过连接步进电机、外设和开发工具,验证DSP芯片的控制功能是否符合设计要求,并进行性能测试。测试过程中需要注意测试程序的正确性和稳定性,同时记录测试数据和结果,为后续的改进和优化提供参考。 步进电机DSP芯片的开发是一个复杂而细致的过程,需要有深厚的硬件设计和编程技术,同时也需要充分的测试和验证。只有经过全面的开发过程,才能保证DSP芯片的正常运行和稳定性。 ### 回答2: 步进电机的DSP芯片开发包括以下几个关键步骤: 首先,确定项目需求,包括步进电机的型号、规格和所需控制功能。同时,了解目标市场和应用场景,确定DSP芯片所需的性能和功能。 第二步,选择合适的DSP开发平台或开发板,具备足够的计算能力和接口。例如,可以选择基于ARM架构的DSP芯片,这种架构具有丰富的资源、低功耗和高性能。 第三步,进行DSP程序开发。首先,编写DSP的初始化代码,配置引脚、外设和时钟等。然后,根据步进电机的特性和控制算法,编写步进电机的控制程序。控制程序中需要实现步进电机的加速、减速、速度控制、位置控制等功能。使用DSP的高级指令集(如乘法累加指令)可以提高运算效率。 第四步,测试和调试DSP程序。使用仿真工具进行初步验证,包括输入输出波形的比对和功能测试。然后,将DSP芯片与步进电机连接并进行实际测试,调整控制参数和算法,使其能够满足项目需求。 第五步,性能优化和系统集成。可以通过优化算法、增加缓存、使用并行计算等手段,提高DSP芯片的运行效率和性能。同时,将DSP芯片与其他系统组件进行集成,实现更加完整的步进电机控制系统。 最后,进行验证和生产。设计团队需要对DSP程序和整个系统进行全面验证,确保其稳定性、可靠性和性能。然后,将设计文件转移到生产线,进行批量生产。同时,根据市场需求持续改进和优化设计,提高步进电机的性能和功能。 ### 回答3: 步进电机DSP芯片的开发主要包括如下几个步骤: 1. 硬件设计:首先需要确定DSP芯片的型号和规格,根据步进电机的需求设计相应的电路板。包括选择合适的电源、时钟、通信接口等外围电路,并根据步进电机的特性设计驱动电路、电流控制电路和保护电路等。 2. 软件开发:根据DSP芯片的开发环境和编程语言,进行软件开发。通常会使用C语言或者汇编语言进行编程,通过编写相应的程序控制步进电机的转动。开发过程中需要考虑步进电机的类型、分辨率和速度等参数,编写相应的控制算法和驱动程序。 3. 调试和验证:完成软件开发后,将程序烧录到DSP芯片中,并通过相应的调试工具进行调试和验证。调试过程中需要测试步进电机的各项功能,确保其正常运行并满足设计要求。 4. 优化和性能测试:在完成基本功能的验证后,对DSP芯片进行性能测试和优化。通过调整算法和参数,并对芯片进行功能和负载测试,提高步进电机的控制精度和性能。 总而言之,步进电机DSP芯片的开发包括硬件设计、软件开发、调试验证和性能优化等多个环节,需要熟悉DSP芯片的特性和编程技术,并结合步进电机的需求进行系统设计和控制程序开发。
dsp芯片28335与5402是两种不同的数字信号处理器芯片。 首先,从处理器性能方面来看,dsp芯片28335和5402都是德州仪器(Texas Instruments)公司生产的高性能数字信号处理器。但28335 DSP芯片采用的是32位的C28x内核,主频为150 MHz,能够提供高性能的浮点运算和并行处理能力。而5402 DSP芯片则采用的是16位的C54x内核,主频为120 MHz,提供低功耗和成本效益的优势。 其次,从应用领域来说,28335 DSP芯片主要用于工业控制、电力电子、医疗设备等领域的实时信号处理。它具有丰富的外设、高速AD/DA转换器和多种通信接口,适合需要高性能计算和实时控制的应用。而5402 DSP芯片则主要用于语音处理、音频编解码、图像处理等低功耗应用。它具有高性能的计算能力和专用的信号处理指令集,适合对信号进行较复杂的信号处理算法。 此外,从价格和成本角度来看,28335 DSP芯片相对来说价格略高,并且由于其32位内核特性和丰富的外设接口,适合处理比较复杂的高性能信号处理任务,所以通常应用于对处理器性能和实时响应要求较高的领域。而5402 DSP芯片则相对价格较低,并且由于其16位内核特性和低功耗优势,适合于对功耗和成本有较高要求的低功耗应用领域。 综上所述,dsp芯片28335和5402在内核架构、性能特点、应用领域以及价格和成本等方面都有所差异。具体选择使用哪种芯片取决于具体的应用需求和预算限制。
### 回答1: 要评估哪款DSP音频处理芯片最好,需要考虑几个关键因素。 首先是性能,好的DSP芯片应该具备高度可编程性和灵活性,以满足不同应用的需求。它应该能提供高精度的音频处理功能,同时具备低功耗和高效能的特点。 其次是兼容性和可靠性,好的DSP芯片应该与各种音频设备和软件平台兼容,以保证音频数据的顺利传输和处理。它还应该具备稳定的运行环境和可靠的数据处理能力,以确保音频质量的稳定性和可靠性。 再次是技术支持和生态系统,好的DSP芯片应该拥有强大的技术支持团队和完善的生态系统。技术支持团队应该能够及时解答用户的问题并提供技术支持。生态系统包括软件和硬件资源的丰富度,可以为用户提供更多的选择和定制化的解决方案。 最后是价值和成本效益,好的DSP芯片应该具备良好的性价比,它的价格应该合理且具备高性能和高可靠性。用户在购买时应该综合考虑性能、成本以及其它因素,选择最适合自己需求的DSP音频处理芯片。 总结起来,好的DSP音频处理芯片应该具备高性能、兼容性和可靠性,并有强大的技术支持和完善的生态系统。同时,它的价值和成本效益也是重要考虑因素。最终的选择应该根据个人或企业的需求来决定。 ### 回答2: 选择一个好的DSP音频处理芯片需要考虑多个因素。首先,性能是关键之一。好的DSP音频处理芯片应具备高效的信号处理能力和低功耗特性,能够实现高质量的音频处理效果。其次,灵活性也是一个重要的因素。一个好的芯片应该具备丰富的音频处理算法和调试工具,以便可以根据实际需求灵活地调整和优化音频处理效果。另外,可靠性也是不可忽视的。一个好的芯片应具备稳定的性能和良好的系统兼容性,以确保在不同工作环境下的可靠运行。 当然,市场上有很多优秀的DSP音频处理芯片。例如,Qualcomm的Hexagon DSP系列和Texas Instruments的C5000系列芯片都是业界知名且被广泛采用的产品。这些芯片具备强大的计算能力和丰富的音频处理算法,可以满足市场上各种不同音频处理需求。此外,有些公司还提供自己的专利算法和技术,如Cirrus Logic的SmartCodec和Analog Devices的SHARC系列芯片,它们在音频领域有着良好的声誉。 总的来说,选择一个好的DSP音频处理芯片需要综合考虑性能、灵活性和可靠性。具体选择哪个芯片需要根据实际需求和项目预算来决定。同时,还需要考虑厂商的技术支持和售后服务,以确保在使用过程中的技术支持和维护。 ### 回答3: 选择好的DSP音频处理芯片需要考虑多个因素,如处理能力、功耗、集成程度、接口适配性、音质表现等。以下列举几个好的DSP音频处理芯片供参考: 1. 德州仪器(Texas Instruments) TMS320系列:TMS320系列DSP芯片在音频处理领域具有较高的声誉,具备出色的处理能力和低功耗特点。此外,它的音质表现也很出色。 2. 瑞萨电子(Renesas) SHARC系列:SHARC系列DSP芯片以其高性能和强大的数字信号处理能力而闻名。它能够处理复杂的音频算法,并提供高品质的音频解决方案。 3. 安森美半导体(Analog Devices) Blackfin系列:Blackfin系列芯片在音频信号处理和嵌入式控制方面表现优秀。具有高性能的处理能力和较低的功耗,能够提供高质量的音频效果。 4. 博通(Broadcom)系列:博通的DSP音频处理芯片广泛应用于家庭音频设备和移动音频设备中。这些芯片具有强大的音频算法和高集成度,能够提供出色的音质效果。 综上所述,选择好的DSP音频处理芯片需要根据具体的应用需求来进行评估,并综合考虑处理能力、功耗、音质表现等因素。这些芯片仅是提供给您作为参考,具体的选择还需要结合您的实际需求来决定。
TDA4VM芯片是德州仪器(TI)公司推出的一款专门用于汽车应用的多核处理器芯片。TDA4VM芯片集成了多个处理核心,包括C66x浮点DSP核心、Arm Cortex-A72多核处理器和ASIL D级别的锁存器雕刻逻辑(SIL)核心。同时,芯片还内置了图像信号处理器(ISP)、媒体处理器(MPU)和安全子系统,以满足汽车应用的高性能和安全要求。 TDA4VM芯片采用了28纳米工艺制造,配备了丰富的外设接口,包括以太网接口、CAN接口、PCI Express接口、USB接口等,可满足汽车中各种通信和连接需求。此外,芯片还支持高速DDR4内存和LPDDR4内存,以提供高带宽和低功耗的存储解决方案。 TDA4VM芯片以其出色的计算和图像处理能力而闻名。它提供了多核处理器的并行能力,能够同时处理各种复杂的算法和任务,如高级驾驶辅助系统(ADAS)、自动驾驶系统和智能汽车中的人机交互。此外,芯片的图像处理器提供了强大的图像处理和视觉识别能力,支持多个高分辨率相机的输入和实时处理,以实现车辆感知和场景理解。 TDA4VM芯片还具备高度的安全性能。它内置了安全子系统,支持硬件加密和解密功能,以保护关键数据不被未授权的访问者获取。此外,芯片还提供了防火墙和完整性检查等安全功能,以保障整个系统的安全性和可靠性。 总之,TDA4VM芯片是一款专为汽车应用而设计的高性能、多核处理器芯片。它具备强大的计算和图像处理能力,同时保证了系统的高度安全性。作为汽车电子领域的新一代解决方案,TDA4VM芯片将为智能汽车的发展提供有力的支持。
以下是基于DSP28335芯片的ADC中断方式采样代码示例: c #include "DSP2833x_Device.h" #include "DSP2833x_Examples.h" #include "DSP2833x_GlobalPrototypes.h" Uint16 AdcBuf[8]; volatile Uint16 SampleFlag; interrupt void AdcIsr(void) { AdcBuf[0] = AdcResult.ADCRESULT0; AdcBuf[1] = AdcResult.ADCRESULT1; AdcBuf[2] = AdcResult.ADCRESULT2; AdcBuf[3] = AdcResult.ADCRESULT3; AdcBuf[4] = AdcResult.ADCRESULT4; AdcBuf[5] = AdcResult.ADCRESULT5; AdcBuf[6] = AdcResult.ADCRESULT6; AdcBuf[7] = AdcResult.ADCRESULT7; SampleFlag = 1; PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; } void AdcInit(void) { EALLOW; SysCtrlRegs.PCLKCR0.bit.ADCENCLK = 1; AdcRegs.ADCTRL1.bit.RESET = 1; AdcRegs.ADCTRL1.bit.SUSMOD = 3; AdcRegs.ADCTRL1.bit.ACQ_PS = 9; AdcRegs.ADCTRL1.bit.CPS = 1; AdcRegs.ADCTRL3.bit.ADCBGRFDN = 0; AdcRegs.ADCTRL3.bit.ADCPWDN = 1; AdcRegs.ADCTRL3.bit.ADCCLKPS = 7; AdcRegs.ADCTRL3.bit.SMODE_SEL = 1; AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 7; AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0; AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 1; AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 2; AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 3; AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 4; AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 5; AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 6; AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 7; AdcRegs.ADCTRL1.bit.INTPULSEPOS = 1; PieVectTable.ADCINT1 = &AdcIsr; IER |= M_INT1; PieCtrlRegs.PIEIER1.bit.INTx1 = 1; AdcRegs.ADCTRL1.bit.ADCENABLE = 1; EDIS; } void main(void) { InitSysCtrl(); EINT; InitPieCtrl(); InitPieVectTable(); AdcInit(); for (;;) { while (SampleFlag == 0) ; SampleFlag = 0; // 此处可进行数据处理 } } 在这个例子中,我们使用了ADC中断来采样8个通道的数据,并将其存储在AdcBuf数组中。每次ADC中断被触发,SampleFlag标志会被设置为1,然后在主循环中进行数据处理。注意,在AdcInit函数中需要配置ADC的各项参数,使其符合实际需求。

最新推荐

安全文明监理实施细则_工程施工土建监理资料建筑监理工作规划方案报告_监理实施细则.ppt

安全文明监理实施细则_工程施工土建监理资料建筑监理工作规划方案报告_监理实施细则.ppt

"REGISTOR:SSD内部非结构化数据处理平台"

REGISTOR:SSD存储裴舒怡,杨静,杨青,罗德岛大学,深圳市大普微电子有限公司。公司本文介绍了一个用于在存储器内部进行规则表达的平台REGISTOR。Registor的主要思想是在存储大型数据集的存储中加速正则表达式(regex)搜索,消除I/O瓶颈问题。在闪存SSD内部设计并增强了一个用于regex搜索的特殊硬件引擎,该引擎在从NAND闪存到主机的数据传输期间动态处理数据为了使regex搜索的速度与现代SSD的内部总线速度相匹配,在Registor硬件中设计了一种深度流水线结构,该结构由文件语义提取器、匹配候选查找器、regex匹配单元(REMU)和结果组织器组成。此外,流水线的每个阶段使得可能使用最大等位性。为了使Registor易于被高级应用程序使用,我们在Linux中开发了一组API和库,允许Registor通过有效地将单独的数据块重组为文件来处理SSD中的文件Registor的工作原

typeerror: invalid argument(s) 'encoding' sent to create_engine(), using con

这个错误通常是由于使用了错误的参数或参数格式引起的。create_engine() 方法需要连接数据库时使用的参数,例如数据库类型、用户名、密码、主机等。 请检查你的代码,确保传递给 create_engine() 方法的参数是正确的,并且符合参数的格式要求。例如,如果你正在使用 MySQL 数据库,你需要传递正确的数据库类型、主机名、端口号、用户名、密码和数据库名称。以下是一个示例: ``` from sqlalchemy import create_engine engine = create_engine('mysql+pymysql://username:password@hos

数据库课程设计食品销售统计系统.doc

数据库课程设计食品销售统计系统.doc

海量3D模型的自适应传输

为了获得的目的图卢兹大学博士学位发布人:图卢兹国立理工学院(图卢兹INP)学科或专业:计算机与电信提交人和支持人:M. 托马斯·福吉奥尼2019年11月29日星期五标题:海量3D模型的自适应传输博士学校:图卢兹数学、计算机科学、电信(MITT)研究单位:图卢兹计算机科学研究所(IRIT)论文主任:M. 文森特·查维拉特M.阿克塞尔·卡里尔报告员:M. GWendal Simon,大西洋IMTSIDONIE CHRISTOPHE女士,国家地理研究所评审团成员:M. MAARTEN WIJNANTS,哈塞尔大学,校长M. AXEL CARLIER,图卢兹INP,成员M. GILLES GESQUIERE,里昂第二大学,成员Géraldine Morin女士,图卢兹INP,成员M. VINCENT CHARVILLAT,图卢兹INP,成员M. Wei Tsang Ooi,新加坡国立大学,研究员基于HTTP的动态自适应3D流媒体2019年11月29日星期五,图卢兹INP授予图卢兹大学博士学位,由ThomasForgione发表并答辩Gilles Gesquière�

1.创建以自己姓名拼音缩写为名的数据库,创建n+自己班级序号(如n10)为名的数据表。2.表结构为3列:第1列列名为id,设为主键、自增;第2列列名为name;第3列自拟。 3.为数据表创建模型,编写相应的路由、控制器和视图,视图中用无序列表(ul 标签)呈现数据表name列所有数据。 4.创建视图,在表单中提供两个文本框,第一个文本框用于输入以上数据表id列相应数值,以post方式提交表单。 5.控制器方法根据表单提交的id值,将相应行的name列修改为第二个文本框中输入的数据。

步骤如下: 1. 创建数据库和数据表 创建名为xny_n10的数据表,其中xny为姓名拼音缩写,n10为班级序号。 ``` CREATE DATABASE IF NOT EXISTS xny_n10; USE xny_n10; CREATE TABLE IF NOT EXISTS xny_n10 ( id INT(11) PRIMARY KEY AUTO_INCREMENT, name VARCHAR(50), column3 VARCHAR(50) ); ``` 2. 创建模型 在app/Models目录下创建XnyN10.php文件,定义XnyN10模型类,继承自I

液压推板式隧道电阻炉计算机监控设计毕业设计.doc

液压推板式隧道电阻炉计算机监控设计毕业设计.doc

HAL多学科开放获取档案库的作用及代理重加密和认证委托的研究

0HAL编号:tel-038172580https://theses.hal.science/tel-038172580提交日期:2022年10月17日0HAL是一个多学科开放获取档案库,用于存储和传播科学研究文档,无论其是否发表。这些文档可以来自法国或国外的教育和研究机构,也可以来自公共或私人研究中心。0HAL多学科开放获取档案库旨在存储和传播法国或国外的教育和研究机构、公共或私人实验室发表或未发表的研究文档。0代理重加密和认证委托的贡献0Anass Sbai0引用此版本:0Anass Sbai. 代理重加密和认证委托的贡献. 离散数学[cs.DM]. 皮卡第朱尔大学, 2021. 法语. �NNT:2021AMIE0032�. �tel-03817258�0博士学位论文0专业“计算机科学”0提交给科技与健康学院博士学位学校0皮卡第朱尔大学0由0Anass SBAI0获得皮卡第朱尔大学博士学位0代理重加密和认证委托的贡献0于2021年7月5日,在评审人的意见后,面向考试委员会进行

c++输入若干不同的整数构成的升序序列,请编写一个程序,找出序列中有多少个数是序列中其他两个数的平均值要求使用算法,使计算量最小,计算时间最短

算法思路: 1. 先将输入的升序序列存储到vector<int>中 2. 枚举每个数,以该数为平均数,查找序列中是否存在两个数的平均值等于该数 3. 可以采用双指针法,从序列的两端开始查找,如果两个指针所指的数的平均值大于目标数,则右指针左移;如果平均值小于目标数,则左指针右移;如果平均值等于目标数,则找到一个符合条件的数 4. 计数器加1,继续枚举下一个数 代码实现如下: ```c++ #include<iostream> #include<vector> using namespace std; int main() { int n; cin >> n;

基于jsp的景区票务系统源码数据库论文.doc

基于jsp的景区票务系统源码数据库论文.doc