open3d python点云匹配
时间: 2023-07-04 07:18:40 浏览: 139
要在Python中使用Open3D进行点云匹配,可以使用以下步骤:
1. 导入Open3D库:
```python
import open3d as o3d
```
2. 读取点云数据:
```python
source = o3d.io.read_point_cloud("source.ply")
target = o3d.io.read_point_cloud("target.ply")
```
3. 对点云进行预处理,例如下采样、计算法线等:
```python
source = source.voxel_down_sample(voxel_size=0.05)
source.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30))
target = target.voxel_down_sample(voxel_size=0.05)
target.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30))
```
4. 进行点云配准:
```python
threshold = 0.02
trans_init = np.eye(4)
reg_p2p = o3d.registration.registration_icp(source, target, threshold, trans_init, o3d.registration.TransformationEstimationPointToPoint())
```
其中,`threshold`是匹配阈值,`trans_init`是初始变换矩阵,`reg_p2p`是输出的变换矩阵。
5. 可视化配准结果:
```python
source.transform(reg_p2p.transformation)
o3d.visualization.draw_geometries([source, target])
```
这样,就可以使用Open3D进行点云匹配了。
阅读全文