# Convert the frame to grayscale gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Apply adaptive thresholding to create binary image with white areas representing potential crispers thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, 5) # Use contour detection to find the contours of the potential crispers contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Convert BGR to HSV color space for contour in contours: x, y, w, h = cv2.boundingRect(contour) # Skip any contour that is too small if w < 20 or h < 20: continue # Extract the region of interest (ROI) from the original grayscale frame roi_gray = gray[y:y+h, x:x+w] # Calculate average pixel value in the ROI avg_pixel_value = cv2.mean(roi_gray)[0] # If the ROI has a lower than threshold average pixel value then it's probably transparent if avg_pixel_value < 100: # Draw rectangle around the crisper on the original color frame cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) # Print the coordinates of crisper's center print(f"Crisper coordinate: ({x + w//2}, {y + h//2})") # Display the resulting frame cv2.imshow('Transparent Crisper Detection', frame)
这段代码是一个用于检测图像中可能存在的透明物体(如薯片袋)的程序。具体步骤如下:
1.将原始图像转换为灰度图像。
2.使用自适应阈值法创建二值图像,其中白色区域表示可能存在的透明物体。
3.使用轮廓检测方法(findContours)找到可能存在的透明物体的轮廓。
4.对于每个轮廓,首先检查其大小是否足够大,如果太小,则忽略该轮廓。
5.从原始灰度图像中提取该轮廓对应的区域(ROI)。
6.计算ROI中像素的平均值。如果该值低于某个阈值,则认为该区域表示透明物体。
7.在原始彩色图像上绘制透明物体的边界框,并打印物体中心的坐标。
8.显示处理后的图像。
该程序可以通过微调阈值和检测大小等参数来适应不同的环境。
基于自适应小波变换的陶瓷瓦鼓包检测方法_魏建
基于自适应小波变换的陶瓷瓦鼓包检测方法
方法概述
魏建在其研究论文中探讨了一种利用自适应小波变换来实现陶瓷瓦表面缺陷特别是鼓包现象的有效识别与分析技术。该方法通过引入多分辨率分析框架下的自适应调整机制,能够显著提高对于微小瑕疵特征提取精度以及抗噪性能。
数据预处理阶段
为了确保后续处理过程中的准确性,在获取原始图像之后会先对其进行一系列必要的前处理操作。这包括但不限于灰度化转换、去噪平滑等步骤以减少无关因素干扰并增强目标区域对比度[^1]:
import cv2
from skimage import img_as_ubyte, color
def preprocess_image(image_path):
# Read image and convert to grayscale
original_img = cv2.imread(image_path)
gray_img = cv2.cvtColor(original_img, cv2.COLOR_BGR2GRAY)
# Apply Gaussian blur for noise reduction
blurred_img = cv2.GaussianBlur(gray_img, (5, 5), 0)
return img_as_ubyte(blurred_img)
自适应小波分解
核心部分在于采用合适的小波基函数对经过初步净化后的信号实施多层次分解。不同于传统固定参数设定方式,这里依据实际样本特性动态选取最优尺度因子及阈值范围,从而更好地匹配不同形态下可能出现的变化模式:
function [cA,cD]=adaptive_wavelet_decomposition(signal,wavelet_name,max_level)
% ADAPTIVE_WAVELET_DECOMPOSITION Performs adaptive wavelet decomposition on input signal.
%
% Inputs:
% - signal: Input vector representing the time series data or an image row/column.
% - wavelet_name: String specifying which type of wavelet should be used ('haar', 'db4', etc.)
% - max_level: Maximum level up to which we want to perform the DWT.
approximation_coefficients = {};
detail_coefficients = {};
for i=1:max_level
% Perform single-level discrete wavelet transform
[cA{i}, cD{i}] = dwt(signal, wavelet_name);
% Adaptive thresholding based on current approximation coefficients' energy distribution
thr_value = calculate_adaptive_threshold(cA{i});
% Threshold detail coefficients according to calculated value
cD{i} = wthresh(cD{i},'s',thr_value);
% Update signal with new approximations for next iteration
signal = cA{i};
end
cA = cell2mat(approximation_coefficients(end));
cD = cell2mat(detail_coefficients);
function t_val = calculate_adaptive_threshold(coeffs)
% Placeholder function; implement specific logic as required by application context
...
end
特征提取与分类决策
完成上述步骤后即可获得一组反映局部结构差异性的系数矩阵作为输入送入机器学习模型训练集当中。通过对大量已知类别实例的学习建立映射关系最终达到自动判别未知样品所属类别的目的。
请使用下列四个变换函数实现灰度变换,写出实现代码,并使用imshow(xxx,[0.255],"InitialMiagnification","fit)显示变换后的图像。
在Python的OpenCV库中,我们可以使用cv2
模块来实现灰度变换并展示图片。这里我会列出四种常见的灰度变换方法:
- 直接转换法(BGR to Grayscale): ```python import cv2 import numpy as np
def bgr_to_gray(img): gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 使用imshow显示灰度图像 cv2.imshow('Gray Image', gray_img, (0.255), "InitialMagnification", "fit")
2. **线性加权平均(Luminosity Method)**:
```python
def linear_weighted_average(img):
blue, green, red = img[:,:,::-1].astype('float') / 255.0
gray = 0.2989 * red + 0.5870 * green + 0.1140 * blue
gray = gray * 255
gray_img = gray.astype('uint8')
cv2.imshow('Linear Weighed Gray', gray_img, (0.255), "InitialMagnification", "fit")
直方图均衡化(Histogram Equalization):
def histogram_equalization(img): gray_eq = cv2.equalizeHist(img) cv2.imshow('Histogram Equalized Gray', gray_eq, (0.255), "InitialMagnification", "fit")
** Adaptive Thresholding (自适应阈值) **:
def adaptive_thresholding(img): gray_adaptive = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, 2) cv2.imshow('Adaptive Threshold Gray', gray_adaptive, (0.255), "InitialMagnification", "fit")
以上代码假设
img
是一个BGR颜色空间的图像。在运行前确保已经安装了OpenCV库(cv2
)。
相关推荐








