# Convert the frame to grayscale gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Apply adaptive thresholding to create binary image with white areas representing potential crispers thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, 5) # Use contour detection to find the contours of the potential crispers contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Convert BGR to HSV color space for contour in contours: x, y, w, h = cv2.boundingRect(contour) # Skip any contour that is too small if w < 20 or h < 20: continue # Extract the region of interest (ROI) from the original grayscale frame roi_gray = gray[y:y+h, x:x+w] # Calculate average pixel value in the ROI avg_pixel_value = cv2.mean(roi_gray)[0] # If the ROI has a lower than threshold average pixel value then it's probably transparent if avg_pixel_value < 100: # Draw rectangle around the crisper on the original color frame cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) # Print the coordinates of crisper's center print(f"Crisper coordinate: ({x + w//2}, {y + h//2})") # Display the resulting frame cv2.imshow('Transparent Crisper Detection', frame)
时间: 2024-02-14 09:22:08 浏览: 172
这段代码是一个用于检测图像中可能存在的透明物体(如薯片袋)的程序。具体步骤如下:
1.将原始图像转换为灰度图像。
2.使用自适应阈值法创建二值图像,其中白色区域表示可能存在的透明物体。
3.使用轮廓检测方法(findContours)找到可能存在的透明物体的轮廓。
4.对于每个轮廓,首先检查其大小是否足够大,如果太小,则忽略该轮廓。
5.从原始灰度图像中提取该轮廓对应的区域(ROI)。
6.计算ROI中像素的平均值。如果该值低于某个阈值,则认为该区域表示透明物体。
7.在原始彩色图像上绘制透明物体的边界框,并打印物体中心的坐标。
8.显示处理后的图像。
该程序可以通过微调阈值和检测大小等参数来适应不同的环境。
阅读全文