RF分类器(二分类)超参数贝叶斯优化 python代码
时间: 2023-09-12 20:10:49 浏览: 125
以下是使用贝叶斯优化调参的RF分类器的Python代码示例:
```python
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import roc_auc_score
from bayes_opt import BayesianOptimization
# 定义优化函数
def rf_cv(n_estimators, max_depth, min_samples_split,
min_samples_leaf, max_features, data, targets):
estimator = RandomForestClassifier(
n_estimators=n_estimators,
max_depth=max_depth,
min_samples_split=min_samples_split,
min_samples_leaf=min_samples_leaf,
max_features=max_features,
random_state=2,
n_jobs=-1
)
cval = cross_val_score(estimator, data, targets,
scoring='roc_auc', cv=5)
return cval.mean()
# 定义超参数的搜索范围
rf_bo = BayesianOptimization(
rf_cv,
{
'n_estimators': (10, 250),
'max_depth': (5, 15),
'min_samples_split': (2, 25),
'min_samples_leaf': (1, 25),
'max_features': (1, 10)
},
random_state=2
)
# 进行贝叶斯优化,寻求最优超参数
rf_bo.maximize(n_iter=10, init_points=5)
# 使用最优超参数构建RF分类器并进行预测
best_params = rf_bo.max['params']
rf_clf = RandomForestClassifier(
n_estimators=int(best_params['n_estimators']),
max_depth=int(best_params['max_depth']),
min_samples_split=int(best_params['min_samples_split']),
min_samples_leaf=int(best_params['min_samples_leaf']),
max_features=int(best_params['max_features']),
random_state=2,
n_jobs=-1
)
rf_clf.fit(X_train, y_train)
y_pred = rf_clf.predict(X_test)
auc_score = roc_auc_score(y_test, y_pred)
print('AUC score:', auc_score)
```
请注意,这个示例中的超参数搜索范围是手动选择的,并且不一定适用于您的数据集。您可能需要根据您的数据集调整搜索范围。
阅读全文