设计算法,实现线性结构上的单链表的产生以及元素的查找、插入与删除。具体实现要求: (1)从键盘输入20个整数,用前插法或尾插法输入结点值。 (2)从键盘输入1个整数,在单链表中查找该结点的位置。若找到,则显示“找到了”;否则,则显示“找不到”。 (3)从键盘输入2个整数,一个表示欲插入的位置i,另一个表示欲插入的数值x,将x插入在对应位置上,输出单链表所有结点值,观察输出结果。 (4)从键盘输入1个整数,表示欲删除结点的位置,输出单链表所有结点值,观察输出结果。 (5)将单链表中值重复的结点删除,使所得的结果表中个结点值均不相同,输出单链表所有结点值,观察输出结果。 (6)删除其中所有数据值为偶数的结点,输出单链表所有结点值,观察输出结果。 (7)将单链表分解成两个单链表A和B,使A链表中含有原链表中序号为奇数的元素,而B链表中含有原链表中序号为偶数的元素,且保持原来的相对顺序,分别输出单链表A和单链表B的所有结点值,观察输出结果。用C语言

时间: 2024-02-13 21:02:08 浏览: 113
以下是单链表的实现代码: ```c #include <stdio.h> #include <stdlib.h> // 定义单链表节点结构体 typedef struct Node { int data; struct Node* next; } Node; // 头插法插入节点 void insertAtHead(Node** head, int data) { Node* newNode = (Node*)malloc(sizeof(Node)); newNode->data = data; newNode->next = *head; *head = newNode; } // 尾插法插入节点 void insertAtTail(Node** head, int data) { Node* newNode = (Node*)malloc(sizeof(Node)); newNode->data = data; newNode->next = NULL; if (*head == NULL) { *head = newNode; return; } Node* cur = *head; while (cur->next != NULL) { cur = cur->next; } cur->next = newNode; } // 查找节点位置 int findNode(Node* head, int value) { int pos = 0; Node* cur = head; while (cur != NULL) { pos++; if (cur->data == value) { printf("找到了,位置为%d\n", pos); return pos; } cur = cur->next; } printf("找不到\n"); return -1; } // 插入节点 void insertNode(Node** head, int pos, int data) { if (pos == 1) { insertAtHead(head, data); return; } Node* cur = *head; for (int i = 1; i < pos-1 && cur != NULL; i++) { cur = cur->next; } if (cur == NULL) { printf("插入位置超出链表长度\n"); return; } Node* newNode = (Node*)malloc(sizeof(Node)); newNode->data = data; newNode->next = cur->next; cur->next = newNode; } // 删除节点 void deleteNode(Node** head, int pos) { if (*head == NULL) { printf("链表为空\n"); return; } Node* cur = *head; if (pos == 1) { *head = cur->next; free(cur); return; } for (int i = 1; i < pos-1 && cur != NULL; i++) { cur = cur->next; } if (cur == NULL || cur->next == NULL) { printf("删除位置超出链表长度\n"); return; } Node* toDelete = cur->next; cur->next = toDelete->next; free(toDelete); } // 删除重复节点 void deleteDuplicate(Node** head) { if (*head == NULL) { printf("链表为空\n"); return; } Node* cur = *head; while (cur != NULL) { Node* innerCur = cur; while (innerCur->next != NULL) { if (innerCur->next->data == cur->data) { Node* toDelete = innerCur->next; innerCur->next = toDelete->next; free(toDelete); } else { innerCur = innerCur->next; } } cur = cur->next; } } // 删除偶数节点 void deleteEven(Node** head) { if (*head == NULL) { printf("链表为空\n"); return; } Node* cur = *head; Node* prev = NULL; while (cur != NULL) { if (cur->data % 2 == 0) { if (prev == NULL) { *head = cur->next; } else { prev->next = cur->next; } Node* toDelete = cur; cur = cur->next; free(toDelete); } else { prev = cur; cur = cur->next; } } } // 分解链表 void splitList(Node* head, Node** aHead, Node** bHead) { if (head == NULL) { return; } Node* curA = NULL; Node* curB = NULL; Node* cur = head; int index = 1; while (cur != NULL) { if (index % 2 != 0) { if (curA == NULL) { *aHead = cur; curA = cur; } else { curA->next = cur; curA = curA->next; } } else { if (curB == NULL) { *bHead = cur; curB = cur; } else { curB->next = cur; curB = curB->next; } } cur = cur->next; index++; } if (curA != NULL) { curA->next = NULL; } if (curB != NULL) { curB->next = NULL; } } // 输出链表 void printList(Node* head) { Node* cur = head; while (cur != NULL) { printf("%d ", cur->data); cur = cur->next; } printf("\n"); } int main() { Node* head = NULL; Node* aHead = NULL; Node* bHead = NULL; // 输入20个整数,用尾插法输入结点值 printf("请输入20个整数(用空格隔开):\n"); for (int i = 0; i < 20; i++) { int num; scanf("%d", &num); insertAtTail(&head, num); } // 在单链表中查找节点 printf("请输入要查找的整数:\n"); int value; scanf("%d", &value); findNode(head, value); // 插入节点 printf("请输入要插入节点的位置和数据(用空格隔开):\n"); int pos, data; scanf("%d %d", &pos, &data); insertNode(&head, pos, data); printf("插入节点后的链表:\n"); printList(head); // 删除节点 printf("请输入要删除节点的位置:\n"); scanf("%d", &pos); deleteNode(&head, pos); printf("删除节点后的链表:\n"); printList(head); // 删除重复节点 deleteDuplicate(&head); printf("删除重复节点后的链表:\n"); printList(head); // 删除偶数节点 deleteEven(&head); printf("删除偶数节点后的链表:\n"); printList(head); // 分解链表 splitList(head, &aHead, &bHead); printf("链表A:\n"); printList(aHead); printf("链表B:\n"); printList(bHead); return 0; } ```
阅读全文

相关推荐

大家在看

recommend-type

使用Arduino监控ECG和呼吸-项目开发

使用TI出色的ADS1292R芯片连接Arduino,以查看您的ECG,呼吸和心率。
recommend-type

航空发动机缺陷检测数据集VOC+YOLO格式291张4类别.7z

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):291 标注数量(xml文件个数):291 标注数量(txt文件个数):291 标注类别数:4 标注类别名称:[“crease”,“damage”,“dot”,“scratch”] 更多信息:blog.csdn.net/FL1623863129/article/details/139274954
recommend-type

python基础教程:pandas DataFrame 行列索引及值的获取的方法

pandas DataFrame是二维的,所以,它既有列索引,又有行索引 上一篇里只介绍了列索引: import pandas as pd df = pd.DataFrame({'A': [0, 1, 2], 'B': [3, 4, 5]}) print df # 结果: A B 0 0 3 1 1 4 2 2 5 行索引自动生成了 0,1,2 如果要自己指定行索引和列索引,可以使用 index 和 column 参数: 这个数据是5个车站10天内的客流数据: ridership_df = pd.DataFrame( data=[[ 0, 0, 2, 5, 0],
recommend-type

【微电网优化】基于粒子群优化IEEE经典微电网结构附matlab代码.zip

1.版本:matlab2014/2019a,内含运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信
recommend-type

三层神经网络模型matlab版

纯手写三层神经网络,有数据,无需其他函数,直接运行,包括batchBP和singleBP。

最新推荐

recommend-type

《算法设计与分析》实验报告:实验二(线性选择问题)

在本实验中,我们通过在快速排序算法的基础上进行改进,实现了一个线性时间选择算法,并通过大量实验来分析其时间复杂性。该问题的核心在于从n个元素中找到第k小的元素,这在数据挖掘、统计分析等多个领域有着广泛的...
recommend-type

C语言程序设计实现二分查找算法

在本课程设计报告中,我们将深入探讨如何使用C语言实现二分查找算法。二分查找是一种高效的搜索算法,尤其适用于已排序的数组或列表。它通过不断将搜索区间减半来快速定位目标值,大大提高了查找效率。以下是关于二...
recommend-type

在python3中实现查找数组中最接近与某值的元素操作

在Python3中,查找数组中最接近某个值的元素是一个常见的编程问题,这通常涉及到线性搜索或二分查找算法的应用。下面将详细解释这两种方法。 首先,我们来看给出的代码片段,它包含两个函数:`find_close` 和 `find...
recommend-type

java数据结构与算法.pdf

在编程领域,数据结构与算法是核心组成部分,它们直接影响到程序的效率和性能。Java作为广泛应用的编程语言,其在实现数据结构和算法时有着丰富的库支持和优秀的可读性。下面将对标题和描述中提到的一些关键知识点...
recommend-type

传感技术中的液位测量传感器系统的设计与实现

【传感技术中的液位测量传感器系统的设计与实现】 在现代工业和科研领域,液位测量是不可或缺的一部分,尤其是在深井液面高度监测中。传统的液位测量方法,如超声波、激光、红外、机械浮子和压力传感器,虽然各有...
recommend-type

Cyclone IV硬件配置详细文档解析

Cyclone IV是Altera公司(现为英特尔旗下公司)的一款可编程逻辑设备,属于Cyclone系列FPGA(现场可编程门阵列)的一部分。作为硬件设计师,全面了解Cyclone IV配置文档至关重要,因为这直接影响到硬件设计的成功与否。配置文档通常会涵盖器件的详细架构、特性和配置方法,是设计过程中的关键参考材料。 首先,Cyclone IV FPGA拥有灵活的逻辑单元、存储器块和DSP(数字信号处理)模块,这些是设计高效能、低功耗的电子系统的基石。Cyclone IV系列包括了Cyclone IV GX和Cyclone IV E两个子系列,它们在特性上各有侧重,适用于不同应用场景。 在阅读Cyclone IV配置文档时,以下知识点需要重点关注: 1. 设备架构与逻辑资源: - 逻辑单元(LE):这是构成FPGA逻辑功能的基本单元,可以配置成组合逻辑和时序逻辑。 - 嵌入式存储器:包括M9K(9K比特)和M144K(144K比特)两种大小的块式存储器,适用于数据缓存、FIFO缓冲区和小规模RAM。 - DSP模块:提供乘法器和累加器,用于实现数字信号处理的算法,比如卷积、滤波等。 - PLL和时钟网络:时钟管理对性能和功耗至关重要,Cyclone IV提供了可配置的PLL以生成高质量的时钟信号。 2. 配置与编程: - 配置模式:文档会介绍多种配置模式,如AS(主动串行)、PS(被动串行)、JTAG配置等。 - 配置文件:在编程之前必须准备好适合的配置文件,该文件通常由Quartus II等软件生成。 - 非易失性存储器配置:Cyclone IV FPGA可使用非易失性存储器进行配置,这些配置在断电后不会丢失。 3. 性能与功耗: - 性能参数:配置文档将详细说明该系列FPGA的最大工作频率、输入输出延迟等性能指标。 - 功耗管理:Cyclone IV采用40nm工艺,提供了多级节能措施。在设计时需要考虑静态和动态功耗,以及如何利用各种低功耗模式。 4. 输入输出接口: - I/O标准:支持多种I/O标准,如LVCMOS、LVTTL、HSTL等,文档会说明如何选择和配置适合的I/O标准。 - I/O引脚:每个引脚的多功能性也是重要考虑点,文档会详细解释如何根据设计需求进行引脚分配和配置。 5. 软件工具与开发支持: - Quartus II软件:这是设计和配置Cyclone IV FPGA的主要软件工具,文档会介绍如何使用该软件进行项目设置、编译、仿真以及调试。 - 硬件支持:除了软件工具,文档还可能包含有关Cyclone IV开发套件和评估板的信息,这些硬件平台可以加速产品原型开发和测试。 6. 应用案例和设计示例: - 实际应用:文档中可能包含针对特定应用的案例研究,如视频处理、通信接口、高速接口等。 - 设计示例:为了降低设计难度,文档可能会提供一些设计示例,它们可以帮助设计者快速掌握如何使用Cyclone IV FPGA的各项特性。 由于文件列表中包含了三个具体的PDF文件,它们可能分别是针对Cyclone IV FPGA系列不同子型号的特定配置指南,或者是覆盖了特定的设计主题,例如“cyiv-51010.pdf”可能包含了针对Cyclone IV E型号的详细配置信息,“cyiv-5v1.pdf”可能是版本1的配置文档,“cyiv-51008.pdf”可能是关于Cyclone IV GX型号的配置指导。为获得完整的技术细节,硬件设计师应当仔细阅读这三个文件,并结合产品手册和用户指南。 以上信息是Cyclone IV FPGA配置文档的主要知识点,系统地掌握这些内容对于完成高效的设计至关重要。硬件设计师必须深入理解文档内容,并将其应用到实际的设计过程中,以确保最终产品符合预期性能和功能要求。
recommend-type

【WinCC与Excel集成秘籍】:轻松搭建数据交互桥梁(必读指南)

# 摘要 本论文深入探讨了WinCC与Excel集成的基础概念、理论基础和实践操作,并进一步分析了高级应用以及实际案例。在理论部分,文章详细阐述了集成的必要性和优势,介绍了基于OPC的通信机制及不同的数据交互模式,包括DDE技术、VBA应用和OLE DB数据访问方法。实践操作章节中,着重讲解了实现通信的具体步骤,包括DDE通信、VBA的使
recommend-type

华为模拟互联地址配置

### 配置华为设备模拟互联网IP地址 #### 一、进入接口配置模式并分配IP地址 为了使华为设备能够模拟互联网连接,需先为指定的物理或逻辑接口设置有效的公网IP地址。这通常是在广域网(WAN)侧执行的操作。 ```shell [Huawei]interface GigabitEthernet 0/0/0 # 进入特定接口配置视图[^3] [Huawei-GigabitEthernet0/0/0]ip address X.X.X.X Y.Y.Y.Y # 设置IP地址及其子网掩码,其中X代表具体的IPv4地址,Y表示对应的子网掩码位数 ``` 这里的`GigabitEth
recommend-type

Java游戏开发简易实现与地图控制教程

标题和描述中提到的知识点主要是关于使用Java语言实现一个简单的游戏,并且重点在于游戏地图的控制。在游戏开发中,地图控制是基础而重要的部分,它涉及到游戏世界的设计、玩家的移动、视图的显示等等。接下来,我们将详细探讨Java在游戏开发中地图控制的相关知识点。 1. Java游戏开发基础 Java是一种广泛用于企业级应用和Android应用开发的编程语言,但它的应用范围也包括游戏开发。Java游戏开发主要通过Java SE平台实现,也可以通过Java ME针对移动设备开发。使用Java进行游戏开发,可以利用Java提供的丰富API、跨平台特性以及强大的图形和声音处理能力。 2. 游戏循环 游戏循环是游戏开发中的核心概念,它控制游戏的每一帧(frame)更新。在Java中实现游戏循环一般会使用一个while或for循环,不断地进行游戏状态的更新和渲染。游戏循环的效率直接影响游戏的流畅度。 3. 地图控制 游戏中的地图控制包括地图的加载、显示以及玩家在地图上的移动控制。Java游戏地图通常由一系列的图像层构成,比如背景层、地面层、对象层等,这些图层需要根据游戏逻辑进行加载和切换。 4. 视图管理 视图管理是指游戏世界中,玩家能看到的部分。在地图控制中,视图通常是指玩家的视野,它需要根据玩家位置动态更新,确保玩家看到的是当前相关场景。使用Java实现视图管理时,可以使用Java的AWT和Swing库来创建窗口和绘制图形。 5. 事件处理 Java游戏开发中的事件处理机制允许对玩家的输入进行响应。例如,当玩家按下键盘上的某个键或者移动鼠标时,游戏需要响应这些事件,并更新游戏状态,如移动玩家角色或执行其他相关操作。 6. 游戏开发工具 虽然Java提供了强大的开发环境,但通常为了提升开发效率和方便管理游戏资源,开发者会使用一些专门的游戏开发框架或工具。常见的Java游戏开发框架有LibGDX、LWJGL(轻量级Java游戏库)等。 7. 游戏地图的编程实现 在编程实现游戏地图时,通常需要以下几个步骤: - 定义地图结构:包括地图的大小、图块(Tile)的尺寸、地图层级等。 - 加载地图数据:从文件(如图片或自定义的地图文件)中加载地图数据。 - 地图渲染:在屏幕上绘制地图,可能需要对地图进行平滑滚动(scrolling)、缩放(scaling)等操作。 - 碰撞检测:判断玩家或其他游戏对象是否与地图中的特定对象发生碰撞,以决定是否阻止移动等。 - 地图切换:实现不同地图间的切换逻辑。 8. JavaTest01示例 虽然提供的信息中没有具体文件内容,但假设"javaTest01"是Java项目或源代码文件的名称。在这样的示例中,"javaTest01"可能包含了一个或多个类(Class),这些类中包含了实现地图控制逻辑的主要代码。例如,可能存在一个名为GameMap的类负责加载和渲染地图,另一个类GameController负责处理游戏循环和玩家输入等。 通过上述知识点,我们可以看出实现一个简单的Java游戏地图控制不仅需要对Java语言有深入理解,还需要掌握游戏开发相关的概念和技巧。在具体开发过程中,还需要参考相关文档和API,以及可能使用的游戏开发框架和工具的使用指南。
recommend-type

【超市销售数据深度分析】:从数据库挖掘商业价值的必经之路

# 摘要 本文全面探讨了超市销售数据分析的方法与应用,从数据的准备、预处理到探索性数据分析,再到销售预测与市场分析,最后介绍高级数据分析技术在销售领域的应用。通过详细的章节阐述,本文着重于数据收集、清洗、转换、可视化和关联规则挖掘等关键步骤。