BERT+CRF实现中文命名体识别的pytorch算法代码
时间: 2023-12-05 22:03:14 浏览: 103
以下是BERT+CRF实现中文命名实体识别的PyTorch算法代码,其中使用了Hugging Face的Transformers库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchcrf import CRF
from transformers import BertTokenizer, BertModel
class BERTCRF(nn.Module):
def __init__(self, num_labels):
super(BERTCRF, self).__init__()
self.num_labels = num_labels
self.bert = BertModel.from_pretrained('bert-base-chinese')
self.dropout = nn.Dropout(0.1)
self.hidden2label = nn.Linear(768, self.num_labels)
self.crf = CRF(self.num_labels)
def forward(self, input_ids, attention_mask, labels=None):
bert_output = self.bert(input_ids, attention_mask=attention_mask)
sequence_output = bert_output.last_hidden_state
sequence_output = self.dropout(sequence_output)
emissions = self.hidden2label(sequence_output)
if labels is not None:
loss = -self.crf(emissions, labels, mask=attention_mask.byte(), reduction='token_mean')
return loss
else:
return self.crf.decode(emissions, mask=attention_mask.byte())
```
在训练过程中,可以使用类似以下的代码对模型进行训练:
```python
model = BERTCRF(num_labels=4)
optimizer = optim.AdamW(model.parameters(), lr=5e-5)
for epoch in range(epochs):
model.train()
for batch in train_dataloader:
input_ids, attention_mask, labels = batch
optimizer.zero_grad()
loss = model(input_ids, attention_mask, labels)
loss.backward()
optimizer.step()
model.eval()
with torch.no_grad():
for batch in dev_dataloader:
input_ids, attention_mask, labels = batch
loss = model(input_ids, attention_mask, labels)
# do evaluation
```
其中,`train_dataloader`和`dev_dataloader`是训练和验证数据的`DataLoader`对象,`num_labels`表示标签数量,这里默认为4,可以根据需要进行修改。
阅读全文