使用自动编码器对运动想象分类的代码
时间: 2023-04-10 22:05:08 浏览: 103
可以使用以下代码:
```python
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense
from tensorflow.keras.models import Model
# 定义输入层
input_layer = Input(shape=(784,))
# 定义编码层
encoded = Dense(128, activation='relu')(input_layer)
encoded = Dense(64, activation='relu')(encoded)
encoded = Dense(32, activation='relu')(encoded)
# 定义解码层
decoded = Dense(64, activation='relu')(encoded)
decoded = Dense(128, activation='relu')(decoded)
decoded = Dense(784, activation='sigmoid')(decoded)
# 定义自动编码器模型
autoencoder = Model(input_layer, decoded)
# 编译模型
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
# 加载数据集
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
# 数据预处理
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
# 训练模型
autoencoder.fit(x_train, x_train,
epochs=50,
batch_size=256,
shuffle=True,
validation_data=(x_test, x_test))
# 使用训练好的模型进行分类
encoded_imgs = autoencoder.predict(x_test)
```
这段代码使用自动编码器对 MNIST 手写数字进行分类。
阅读全文