c语言蚁群算法小程序,<b>蚁群算法小程序(C/C++语言实现)(一)</b>[VC/C++编程]

时间: 2023-12-24 12:05:09 浏览: 87
很高兴收到您的问题!下面是一个简单的蚁群算法的C语言实现示例: ```c #include <stdio.h> #include <stdlib.h> #include <time.h> #include <math.h> #define MAX_ANT_COUNT 50 #define MAX_CITY_COUNT 20 #define MAX_ITERATION 200 #define ALPHA 1.0 #define BETA 2.0 #define RHO 0.5 #define Q 100.0 int city_count; // 城市数量 int ant_count; // 蚂蚁数量 int distance[MAX_CITY_COUNT][MAX_CITY_COUNT]; // 距离矩阵 double pheromone[MAX_CITY_COUNT][MAX_CITY_COUNT]; // 信息素矩阵 int ant_path[MAX_ANT_COUNT][MAX_CITY_COUNT]; // 蚂蚁路径 double ant_distance[MAX_ANT_COUNT]; // 蚂蚁路径长度 int best_path[MAX_CITY_COUNT]; // 最佳路径 double best_distance = 1e9; // 最佳路径长度 // 初始化距离矩阵和信息素矩阵 void init_data() { srand(time(NULL)); for (int i = 0; i < city_count; i++) { for (int j = i + 1; j < city_count; j++) { int d = rand() % 100 + 1; distance[i][j] = d; distance[j][i] = d; pheromone[i][j] = 1.0; pheromone[j][i] = 1.0; } } } // 计算路径长度 double calculate_distance(int *path) { double d = 0.0; for (int i = 0; i < city_count - 1; i++) { d += distance[path[i]][path[i + 1]]; } d += distance[path[city_count - 1]][path[0]]; return d; } // 选择下一个城市 int select_next_city(int ant_id, int current_city, int *visited) { double p[MAX_CITY_COUNT]; double p_sum = 0.0; for (int i = 0; i < city_count; i++) { if (visited[i] == 0) { p[i] = pow(pheromone[current_city][i], ALPHA) * pow(1.0 / distance[current_city][i], BETA); p_sum += p[i]; } } if (p_sum == 0.0) { return -1; } double r = (double)rand() / RAND_MAX; double s = 0.0; for (int i = 0; i < city_count; i++) { if (visited[i] == 0) { s += p[i] / p_sum; if (s >= r) { return i; } } } return -1; } // 蚂蚁移动 void ant_move(int ant_id) { int visited[MAX_CITY_COUNT] = { 0 }; int current_city = rand() % city_count; ant_path[ant_id][0] = current_city; visited[current_city] = 1; for (int i = 1; i < city_count; i++) { int next_city = select_next_city(ant_id, current_city, visited); if (next_city == -1) { break; } ant_path[ant_id][i] = next_city; visited[next_city] = 1; ant_distance[ant_id] += distance[current_city][next_city]; current_city = next_city; } ant_distance[ant_id] += distance[ant_path[ant_id][city_count - 1]][ant_path[ant_id][0]]; } // 更新信息素 void update_pheromone() { for (int i = 0; i < city_count; i++) { for (int j = i + 1; j < city_count; j++) { pheromone[i][j] *= (1.0 - RHO); pheromone[j][i] *= (1.0 - RHO); for (int k = 0; k < ant_count; k++) { double delta = 0.0; for (int l = 0; l < city_count - 1; l++) { if ((ant_path[k][l] == i && ant_path[k][l + 1] == j) || (ant_path[k][l] == j && ant_path[k][l + 1] == i)) { delta += Q / ant_distance[k]; } } pheromone[i][j] += delta; pheromone[j][i] += delta; } } } } // 蚁群算法 void ant_algorithm() { for (int iter = 0; iter < MAX_ITERATION; iter++) { for (int i = 0; i < ant_count; i++) { ant_distance[i] = 0.0; ant_move(i); if (ant_distance[i] < best_distance) { best_distance = ant_distance[i]; for (int j = 0; j < city_count; j++) { best_path[j] = ant_path[i][j]; } } } update_pheromone(); } } int main() { city_count = 10; ant_count = 20; init_data(); ant_algorithm(); printf("best distance: %lf\n", best_distance); printf("best path: "); for (int i = 0; i < city_count; i++) { printf("%d ", best_path[i]); } printf("\n"); return 0; } ``` 该示例实现了一个简单的蚁群算法,并且使用了随机生成的距离矩阵和初始信息素矩阵。在算法的每一轮迭代中,每只蚂蚁会根据当前位置和信息素浓度选择下一个城市,直到所有城市都被访问过。然后,根据每只蚂蚁的路径更新信息素矩阵。最后,经过多轮迭代后,找到最短路径并输出。
阅读全文

相关推荐

最新推荐

recommend-type

蚁群算法 C语言程序(已运行)

蚁群算法(Ant Colony Optimization, ACO)是一种受到自然界蚂蚁觅食行为启发的全局优化算法。在蚂蚁系统中,蚂蚁通过释放信息素来与同伴沟通,寻找食物源和返回巢穴的最佳路径。ACO同样利用这种机制,在解决复杂...
recommend-type

基于C语言实现的迷宫算法示例

迷宫算法的实现可以通过各种编程语言,如C语言、Java、Python等。 二、基于C语言实现的迷宫算法 在本文中,我们将使用C语言来实现迷宫算法。首先,我们需要定义迷宫的结构体,包括迷宫的尺寸、入口和出口的坐标等...
recommend-type

基于 Q-M 算法的逻辑代数化简C语言的程序实现报告.docx

**基于 Q-M 算法的逻辑代数化简 C 语言实现** Q-M 算法是一种用于逻辑函数化简的有效方法,特别是在处理大型逻辑表达式时。它通过搜索本原蕴含项来找到覆盖开状态集合的最小集合,从而简化逻辑函数。以下是该算法在...
recommend-type

用C编写一个送给女朋友的情人节小程序 可爱!

C语言情人节小程序设计 本文将对C语言编写的送给女朋友的情人节小程序进行详细的解释和分析,并对其中涉及的知识点进行总结。 一、C语言概述 C语言是一种面向过程的高级编程语言,由丹尼斯·里奇(Dennis Ritchie...
recommend-type

实数FFT算法的设计及其C语言实现

本资源摘要信息旨在介绍实数FFT算法的设计和C语言实现,通过对算法的推导和C语言函数的实现,旨在为读者提供一个实用的解决方案,能够直接应用于自己的系统中。 一、实数FFT算法的设计 实数FFT算法是快速傅里叶...
recommend-type

BottleJS快速入门:演示JavaScript依赖注入优势

资源摘要信息:"BottleJS是一个轻量级的依赖项注入容器,用于JavaScript项目中,旨在减少导入依赖文件的数量并优化代码结构。该项目展示BottleJS在前后端的应用,并通过REST API演示其功能。" BottleJS Playgound 概述: BottleJS Playgound 是一个旨在演示如何在JavaScript项目中应用BottleJS的项目。BottleJS被描述为JavaScript世界中的Autofac,它是依赖项注入(DI)容器的一种实现,用于管理对象的创建和生命周期。 依赖项注入(DI)的基本概念: 依赖项注入是一种设计模式,允许将对象的依赖关系从其创建和维护的代码中分离出来。通过这种方式,对象不会直接负责创建或查找其依赖项,而是由外部容器(如BottleJS)来提供这些依赖项。这样做的好处是降低了模块间的耦合,提高了代码的可测试性和可维护性。 BottleJS 的主要特点: - 轻量级:BottleJS的设计目标是尽可能简洁,不引入不必要的复杂性。 - 易于使用:通过定义服务和依赖关系,BottleJS使得开发者能够轻松地管理大型项目中的依赖关系。 - 适合前后端:虽然BottleJS最初可能是为前端设计的,但它也适用于后端JavaScript项目,如Node.js应用程序。 项目结构说明: 该仓库的src目录下包含两个子目录:sans-bottle和bottle。 - sans-bottle目录展示了传统的方式,即直接导入依赖并手动协调各个部分之间的依赖关系。 - bottle目录则使用了BottleJS来管理依赖关系,其中bottle.js文件负责定义服务和依赖关系,为项目提供一个集中的依赖关系源。 REST API 端点演示: 为了演示BottleJS的功能,该项目实现了几个简单的REST API端点。 - GET /users:获取用户列表。 - GET /users/{id}:通过给定的ID(范围0-11)获取特定用户信息。 主要区别在用户路由文件: 该演示的亮点在于用户路由文件中,通过BottleJS实现依赖关系的注入,我们可以看到代码的组织和结构比传统方式更加清晰和简洁。 BottleJS 和其他依赖项注入容器的比较: - BottleJS相比其他依赖项注入容器如InversifyJS等,可能更轻量级,专注于提供基础的依赖项管理和注入功能。 - 它的设计更加直接,易于理解和使用,尤其适合小型至中型的项目。 - 对于需要高度解耦和模块化的大规模应用,可能需要考虑BottleJS以外的解决方案,以提供更多的功能和灵活性。 在JavaScript项目中应用依赖项注入的优势: - 可维护性:通过集中管理依赖关系,可以更容易地理解和修改应用的结构。 - 可测试性:依赖项的注入使得创建用于测试的mock依赖关系变得简单,从而方便单元测试的编写。 - 模块化:依赖项注入鼓励了更好的模块化实践,因为模块不需关心依赖的来源,只需负责实现其定义的接口。 - 解耦:模块之间的依赖关系被清晰地定义和管理,减少了直接耦合。 总结: BottleJS Playgound 项目提供了一个生动的案例,说明了如何在JavaScript项目中利用依赖项注入模式改善代码质量。通过该项目,开发者可以更深入地了解BottleJS的工作原理,以及如何将这一工具应用于自己的项目中,从而提高代码的可维护性、可测试性和模块化程度。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【版本控制】:R语言项目中Git与GitHub的高效应用

![【版本控制】:R语言项目中Git与GitHub的高效应用](https://opengraph.githubassets.com/2abf032294b9f2a415ddea58f5fde6fcb018b57c719dfc371bf792c251943984/isaacs/github/issues/37) # 1. 版本控制与R语言的融合 在信息技术飞速发展的今天,版本控制已成为软件开发和数据分析中不可或缺的环节。特别是对于数据科学的主流语言R语言,版本控制不仅帮助我们追踪数据处理的历史,还加强了代码共享与协作开发的效率。R语言与版本控制系统的融合,特别是与Git的结合使用,为R语言项
recommend-type

RT-DETR如何实现在实时目标检测中既保持精度又降低计算成本?请提供其技术实现的详细说明。

为了理解RT-DETR如何在实时目标检测中保持精度并降低计算成本,我们必须深入研究其架构优化和技术细节。RT-DETR通过融合CNN与Transformer的优势,提出了一种混合编码器结构,这种结构采用了尺度内交互(AIFI)和跨尺度融合(CCFM)策略来提取和融合多尺度图像特征,这些特征能够提供丰富的视觉上下文信息,从而提升了模型的检测精度。 参考资源链接:[RT-DETR:实时目标检测中的新胜者](https://wenku.csdn.net/doc/1ehyj4a8z2?spm=1055.2569.3001.10343) 在编码器阶段,RT-DETR使用主干网络提取图像特征,然后通过
recommend-type

vConsole插件使用教程:输出与复制日志文件

资源摘要信息:"vconsole-outputlog-plugin是一个JavaScript插件,它能够在vConsole环境中输出日志文件,并且支持将日志复制到剪贴板或下载。vConsole是一个轻量级、可扩展的前端控制台,通常用于移动端网页的调试。该插件的安装依赖于npm,即Node.js的包管理工具。安装完成后,通过引入vConsole和vConsoleOutputLogsPlugin来初始化插件,之后即可通过vConsole输出的console打印信息进行日志的复制或下载操作。这在进行移动端调试时特别有用,可以帮助开发者快速获取和分享调试信息。" 知识点详细说明: 1. vConsole环境: vConsole是一个专为移动设备设计的前端调试工具。它模拟了桌面浏览器的控制台,并添加了网络请求、元素选择、存储查看等功能。vConsole可以独立于原生控制台使用,提供了一个更为便捷的方式来监控和调试Web页面。 2. 日志输出插件: vconsole-outputlog-plugin是一个扩展插件,它增强了vConsole的功能,使得开发者不仅能够在vConsole中查看日志,还能将这些日志方便地输出、复制和下载。这样的功能在移动设备上尤为有用,因为移动设备的控制台通常不易于使用。 3. npm安装: npm(Node Package Manager)是Node.js的包管理器,它允许用户下载、安装、管理各种Node.js的包或库。通过npm可以轻松地安装vconsole-outputlog-plugin插件,只需在命令行执行`npm install vconsole-outputlog-plugin`即可。 4. 插件引入和使用: - 首先创建一个vConsole实例对象。 - 然后创建vConsoleOutputLogsPlugin对象,它需要一个vConsole实例作为参数。 - 使用vConsole对象的实例,就可以在其中执行console命令,将日志信息输出到vConsole中。 - 插件随后能够捕获这些日志信息,并提供复制到剪贴板或下载的功能。 5. 日志操作: - 复制到剪贴板:在vConsole界面中,通常会有“复制”按钮,点击即可将日志信息复制到剪贴板,开发者可以粘贴到其他地方进行进一步分析或分享。 - 下载日志文件:在某些情况下,可能需要将日志信息保存为文件,以便离线查看或作为报告的一部分。vconsole-outputlog-plugin提供了将日志保存为文件并下载的功能。 6. JavaScript标签: 该插件是使用JavaScript编写的,因此它与JavaScript紧密相关。JavaScript是一种脚本语言,广泛用于网页的交互式内容开发。此插件的开发和使用都需要一定的JavaScript知识,包括对ES6(ECMAScript 2015)版本规范的理解和应用。 7. 压缩包子文件: vconsole-outputlog-plugin-main文件名可能是指该插件的压缩包或分发版本,通常包含插件的源代码、文档和可能的配置文件。开发者可以通过该文件名在项目中正确地引用和使用插件。 通过掌握这些知识点,开发者可以有效地在vConsole环境中使用vconsole-outputlog-plugin插件,提高移动端网页的调试效率和体验。