stm32f407VET6TR和stm32f407VET6的区别
时间: 2024-10-22 19:03:57 浏览: 103
STM32F407VET6TR和STM32F407VET6都是基于STMicroelectronics的Cortex-M4处理器的微控制器型号,它们都属于STM32F407系列。主要区别在于以下几个方面:
1. **存储配置**:
- STM32F407VET6TR通常表示有更高的存储容量选项,它可能包含了更大的闪存(例如512KB或1MB),以及更多的RAM(如96KB或192KB)。
- STM32F407VET6的标准配置可能较低一些,存储容量可能会少一些。
2. **功能增强**:
- TR版本(通常代表“Trunk”或“Technology Package”的缩写)可能包括额外的功能模块或外围设备,比如更高级的模拟信号处理、加密硬件等,这取决于具体的TR子型号。
- 标准版(VET6)可能基础功能更为通用,没有那么多定制特性。
3. **温度范围**:
- VET6TR可能存在更宽的工作温度范围,这对于工业级应用可能是一个关键选择因素。
4. **封装形式**:
- 尽管名称相似,封装可能会有所不同,例如QFP、LQFP或WLCSP等,这影响了尺寸和引脚布局。
5. **成本和价格**:
- 高端特性的TR版本通常会比标准版VET6稍贵些,因为额外功能带来的成本增加。
总之,STM32F407VET6TR作为一款定制化的版本,提供了更多的性能、功能和扩展性,适合特定的应用需求。如果你需要查看详细规格对比,建议查阅制造商的数据手册或官方产品页面。
相关问题
stm32f407内存大小
### STM32F407 内存容量规格参数
STM32F407VET6TR 配备了大容量嵌入式存储器,具体配置如下:
- **Flash 存储器**:512 KB 的 Flash 存储器用于存储应用程序代码[^1]。
- **SRAM**:192 KB 的 SRAM 用于存储临时数据和堆栈[^1]。
此外,开发板还集成了额外的外部 EEPROM 存储器 M24C08,提供 1 K 字节的存储空间,可用于保存不希望因掉电而丢失的数据或参数[^4]。
```c
// 示例代码展示如何访问内部Flash和SRAM(伪代码)
void accessMemory() {
uint32_t flashAddress = 0x08000000; // Flash起始地址
uint32_t sramAddress = 0x20000000; // SRAM起始地址
volatile uint32_t* pFlash = (volatile uint32_t*)flashAddress;
volatile uint32_t* pSram = (volatile uint32_t*)sramAddress;
// 访问Flash中的某个位置
uint32_t dataFromFlash = *pFlash;
// 向SRAM中写入数据
*pSram = someData;
}
```
stc89c52和stm32f103vet6can通讯代码
这里提供一个简单的示例代码,展示如何在STC89C52和STM32F103VE之间使用CAN通信:
STC89C52代码:
```c
#include <REG52.H>
#include <intrins.h>
#define CAN_SPEED 250000 // CAN总线速率
sbit P1_0 = P1^0; // LED指示灯
unsigned char Can_Init_Flags; // CAN初始化标志
unsigned char Can_Rx_Msg_Flags; // CAN消息接收标志
unsigned char Can_Tx_Msg_Flags; // CAN消息发送标志
unsigned char Can_Err_Msg_Flags; // CAN错误消息标志
unsigned char Can_Msg_Priority; // CAN消息优先级
unsigned char Can_Msg_Length; // CAN消息长度
unsigned char Can_Msg_Data[8]; // CAN消息数据
// CAN初始化函数
void Can_Init() {
Can_Init_Flags = 0;
// P1.0配置为输出
P1_0 = 0;
// 定时器0初始化
TMOD &= 0xF0;
TMOD |= 0x01;
TH0 = 0xFC;
TL0 = 0x67;
ET0 = 1;
TR0 = 1;
// CAN初始化
Can_Init_Flags = CAN_Init_Mode(CAN_SPEED);
if (Can_Init_Flags == 0x00) {
P1_0 = 1; // 初始化成功,LED指示灯亮
} else {
P1_0 = 0; // 初始化失败,LED指示灯灭
}
}
// CAN消息接收函数
void Can_Receive_Msg() {
Can_Rx_Msg_Flags = CAN_Rx_Msg(&Can_Msg_Priority, &Can_Msg_Length, Can_Msg_Data);
if (Can_Rx_Msg_Flags == 0x00) {
if (Can_Msg_Length == 1 && Can_Msg_Data[0] == 0x01) {
P1_0 = 1; // 接收到0x01,LED指示灯亮
} else {
P1_0 = 0; // 接收到其他数据,LED指示灯灭
}
}
}
// CAN消息发送函数
void Can_Transmit_Msg() {
Can_Tx_Msg_Flags = CAN_Tx_Msg(Can_Msg_Priority, Can_Msg_Length, Can_Msg_Data);
if (Can_Tx_Msg_Flags == 0x00) {
P1_0 = 1; // 发送成功,LED指示灯亮
} else {
P1_0 = 0; // 发送失败,LED指示灯灭
}
}
// 定时器0中断函数
void Timer0_ISR() interrupt 1 {
Can_Receive_Msg(); // 接收CAN消息
}
// 主函数
void main() {
Can_Init(); // CAN初始化
while (1) {
Can_Msg_Priority = 0x00; // CAN消息优先级
Can_Msg_Length = 1; // CAN消息长度
Can_Msg_Data[0] = 0x01; // CAN消息数据
Can_Transmit_Msg(); // 发送CAN消息
Delay50ms(); // 延时50ms
}
}
```
STM32F103VE代码:
```c
#include "stm32f10x.h"
#define CAN_SPEED 250000 // CAN总线速率
GPIO_InitTypeDef GPIO_InitStructure; // GPIO初始化结构体
CAN_InitTypeDef CAN_InitStructure; // CAN初始化结构体
CAN_FilterInitTypeDef CAN_FilterInitStructure; // CAN过滤器初始化结构体
CanTxMsg TxMessage; // CAN发送消息结构体
CanRxMsg RxMessage; // CAN接收消息结构体
// 延时函数
void Delay(uint32_t nCount) {
for(; nCount != 0; nCount--);
}
// GPIO初始化函数
void GPIO_Configuration(void) {
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); // 使能GPIOA时钟
// PA11(CAN1-Rx)、PA12(CAN1-Tx)配置为复用推挽输出
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11 | GPIO_Pin_12;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
}
// CAN初始化函数
void CAN_Configuration(void) {
RCC_APB1PeriphClockCmd(RCC_APB1Periph_CAN1, ENABLE); // 使能CAN1时钟
// CAN1初始化
CAN_InitStructure.CAN_TTCM = DISABLE;
CAN_InitStructure.CAN_ABOM = DISABLE;
CAN_InitStructure.CAN_AWUM = DISABLE;
CAN_InitStructure.CAN_NART = DISABLE;
CAN_InitStructure.CAN_RFLM = DISABLE;
CAN_InitStructure.CAN_TXFP = DISABLE;
CAN_InitStructure.CAN_Mode = CAN_Mode_Normal;
CAN_InitStructure.CAN_SJW = CAN_SJW_1tq;
CAN_InitStructure.CAN_BS1 = CAN_BS1_6tq;
CAN_InitStructure.CAN_BS2 = CAN_BS2_8tq;
CAN_InitStructure.CAN_Prescaler = 16;
CAN_Init(CAN1, &CAN_InitStructure);
// CAN过滤器初始化
CAN_FilterInitStructure.CAN_FilterNumber = 0;
CAN_FilterInitStructure.CAN_FilterMode = CAN_FilterMode_IdMask;
CAN_FilterInitStructure.CAN_FilterScale = CAN_FilterScale_32bit;
CAN_FilterInitStructure.CAN_FilterIdHigh = 0x0000;
CAN_FilterInitStructure.CAN_FilterIdLow = 0x0000;
CAN_FilterInitStructure.CAN_FilterMaskIdHigh = 0x0000;
CAN_FilterInitStructure.CAN_FilterMaskIdLow = 0x0000;
CAN_FilterInitStructure.CAN_FilterFIFOAssignment = 0;
CAN_FilterInitStructure.CAN_FilterActivation = ENABLE;
CAN_FilterInit(&CAN_FilterInitStructure);
// CAN中断配置
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitStructure.NVIC_IRQChannel = USB_LP_CAN1_RX0_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x0F;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x00;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
// CAN接收中断使能
CAN_ITConfig(CAN1, CAN_IT_FMP0, ENABLE);
}
// 发送CAN消息函数
void CAN_Send_Msg(uint8_t *Data, uint8_t DataLength) {
TxMessage.StdId = 0x123;
TxMessage.ExtId = 0;
TxMessage.IDE = CAN_Id_Standard;
TxMessage.RTR = CAN_RTR_Data;
TxMessage.DLC = DataLength;
for (int i = 0; i < DataLength; i++) {
TxMessage.Data[i] = Data[i];
}
CAN_Transmit(CAN1, &TxMessage);
}
// 接收CAN消息函数
void USB_LP_CAN1_RX0_IRQHandler(void) {
CAN_Receive(CAN1, CAN_FIFO0, &RxMessage);
if (RxMessage.StdId == 0x123 && RxMessage.IDE == CAN_Id_Standard && RxMessage.DLC == 1 && RxMessage.Data[0] == 0x01) {
GPIO_WriteBit(GPIOA, GPIO_Pin_0, Bit_SET); // 接收到0x01,PA0输出高电平
} else {
GPIO_WriteBit(GPIOA, GPIO_Pin_0, Bit_RESET); // 接收到其他数据,PA0输出低电平
}
}
// 主函数
int main(void) {
// GPIO初始化
GPIO_Configuration();
// CAN初始化
CAN_Configuration();
// 发送CAN消息
uint8_t Data[] = {0x01};
while (1) {
CAN_Send_Msg(Data, sizeof(Data));
Delay(0xFFFFF); // 延时
}
}
```
注意:本示例代码中,STC89C52使用P1.0作为LED指示灯,STM32F103VE使用PA0作为LED指示灯,需要根据自己的硬件连接情况进行修改。此外,还需要在STM32F103VE的`stm32f10x_it.c`文件中添加CAN接收中断处理函数。
阅读全文