yolov8发展的历程
时间: 2024-04-06 19:27:38 浏览: 127
YOLOv8是YOLO(You Only Look Once)系列目标检测算法的最新版本,它是由Joseph Redmon和Ali Farhadi等人开发的。下面是YOLOv8发展的历程:
1. YOLOv1:YOLOv1是YOLO系列的第一个版本,于2015年发布。它采用单个卷积神经网络将图像分割为网格,并在每个网格中预测边界框和类别。YOLOv1具有实时性能和较高的准确率,但在小目标检测和定位精度方面存在一定的问题。
2. YOLOv2:为了改进YOLOv1的不足,YOLOv2在2016年发布。它引入了一些新的技术,如Darknet-19网络结构、多尺度预测和Anchor Boxes等。这些改进使得YOLOv2在小目标检测和定位精度方面有了显著提升。
3. YOLOv3:YOLOv3于2018年发布,是YOLO系列的第三个版本。它在YOLOv2的基础上进一步改进,引入了更多的技术,如FPN(Feature Pyramid Network)、PANet(Path Aggregation Network)和多尺度预测等。这些改进使得YOLOv3在目标检测准确率和速度方面都有了显著提升。
4. YOLOv4:YOLOv4是YOLO系列的第四个版本,由Alexey Bochkovskiy、Chien-Yao Wang和Hong-Yuan Mark Liao等人于2020年发布。YOLOv4在YOLOv3的基础上进一步改进,引入了一系列新的技术,如CSPDarknet53网络结构、SAM(Spatial Attention Module)和PANet等。这些改进使得YOLOv4在目标检测准确率和速度方面达到了新的高度。
5. YOLOv5:YOLOv5是YOLO系列的最新版本,由Glenn Jocher于2020年发布。YOLOv5采用了一种新的轻量级网络结构,并引入了一些新的技术,如Pseudo Labeling和Self-training等。这些改进使得YOLOv5在目标检测准确率和速度方面都有了显著提升。
阅读全文