DataFrame({'date': ['2002','2003','2004','2005','2006','2007','2008','2009','2010','2011','2012','2013','2014','2015','2016','2017','2018','2019','2020','2021','2022'], 'value': [4525.7,5267.2,6252.5,7149.8,8387.0,10425.5,11813.1,12900.9,14964.0,17188.8,19024.7,21134.6,22926.0,24779.1,27041.2,29883.0,33106.0,35445.1,35943.3,41045.6,41611.0]})
时间: 2023-08-20 13:28:50 浏览: 225
好的,我假设您使用的是Python语言和matplotlib库来绘制图形。以下是绘制残差率散点图和分布直方图的代码:
```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
# 创建数据框
df = pd.DataFrame({'date': ['2002','2003','2004','2005','2006','2007',
'2008','2009','2010','2011','2012','2013',
'2014','2015','2016','2017','2018','2019',
'2020','2021','2022'],
'value': [4525.7,5267.2,6252.5,7149.8,8387.0,10425.5,
11813.1,12900.9,14964.0,17188.8,19024.7,21134.6,
22926.0,24779.1,27041.2,29883.0,33106.0,35445.1,
35943.3,41045.6,41611.0]})
# 计算残差率
df['residual'] = 100 * (df['value'] - df['value'].shift(1)) / df['value'].shift(1)
# 绘制残差率散点图
plt.figure(figsize=(8,6))
plt.scatter(df['date'][1:], df['residual'][1:], marker='o')
plt.axhline(y=0, color='red', linestyle='--')
plt.xlabel('Year')
plt.ylabel('Residual Rate (%)')
plt.title('Residual Rate Scatter Plot')
plt.show()
# 绘制残差率分布直方图
plt.figure(figsize=(8,6))
plt.hist(df['residual'][1:], bins=np.arange(-20, 21, 2), edgecolor='black')
plt.axvline(x=0, color='red', linestyle='--')
plt.xlabel('Residual Rate (%)')
plt.ylabel('Frequency')
plt.title('Residual Rate Distribution Histogram')
plt.show()
```
代码中首先创建了一个数据框,然后计算了每年的残差率,并将结果储存在新的一列中。接下来,使用`plt.scatter`绘制残差率散点图,并使用`plt.axhline`添加一条水平参考线。最后,使用`plt.hist`绘制残差率分布直方图,并使用`np.arange`生成直方图的边界。
希望这可以帮助到您。如果您有任何疑问,请随时问我。
阅读全文