用c++写出一下题目代码及其注释及其算法思想:有T组数据。 每组数据给定长度为 N的数组 A,对所有长度大于等于 k 的连续子段,取出其第 k 大放入数组 B 中。求数组 B 的第 M 大

时间: 2024-05-21 19:11:24 浏览: 54
#include <stdio.h> #include <stdlib.h> // 快速排序 void quick_sort(int *arr, int left, int right) { if (left >= right) return; int i = left, j = right, pivot = arr[left]; while (i < j) { while (i < j && arr[j] <= pivot) j--; arr[i] = arr[j]; while (i < j && arr[i] >= pivot) i++; arr[j] = arr[i]; } arr[i] = pivot; quick_sort(arr, left, i - 1); quick_sort(arr, i + 1, right); } int main() { int T; scanf("%d", &T); while (T--) { int N, k, M; scanf("%d%d%d", &N, &k, &M); int *A = (int*)malloc(N * sizeof(int)); int cnt = 0; for (int i = 0; i < N; i++) { scanf("%d", &A[i]); if (i >= k - 1) cnt++; } int *B = (int*)malloc(cnt * sizeof(int)); cnt = 0; for (int i = 0; i < N - k + 1; i++) { int *tmp = (int*)malloc(k * sizeof(int)); for (int j = 0; j < k; j++) { tmp[j] = A[i + j]; } quick_sort(tmp, 0, k - 1); B[cnt++] = tmp[k - 1]; free(tmp); } quick_sort(B, 0, cnt - 1); // 对数组B进行排序 printf("%d\n", B[cnt - M]); // 输出数组B的第M大 free(A); free(B); } return 0; } // 算法思想: // 1. 读入T组数据 // 2. 对于每组数据,读入N、k、M和数组A // 3. 遍历数组A,对每个长度大于等于k的连续子段取出其第k大,并放入数组B中 // 4. 对数组B进行排序 // 5. 输出数组B的第M大
阅读全文

相关推荐

zip
利用C++实现以下经典数据结构与算法:线性表(顺序表、链表、静态链表、三元组)、栈(双栈、共享栈)、队列(任务调度、循环队列、双向队列、链队列)、数组(特殊矩阵、稀疏矩阵压缩)、串(朴素模式匹配、KMP算法、KMP优化算法)、树(先序遍历、线索二叉树、哈夫曼树等。 利用C++实现以下经典数据结构与算法:线性表(顺序表、链表、静态链表、三元组)、栈(双栈、共享栈)、队列(任务调度、循环队列、双向队列、链队列)、数组(特殊矩阵、稀疏矩阵压缩)、串(朴素模式匹配、KMP算法、KMP优化算法)、树(先序遍历、线索二叉树、哈夫曼树等。 利用C++实现以下经典数据结构与算法:线性表(顺序表、链表、静态链表、三元组)、栈(双栈、共享栈)、队列(任务调度、循环队列、双向队列、链队列)、数组(特殊矩阵、稀疏矩阵压缩)、串(朴素模式匹配、KMP算法、KMP优化算法)、树(先序遍历、线索二叉树、哈夫曼树等。 利用C++实现以下经典数据结构与算法:线性表(顺序表、链表、静态链表、三元组)、栈(双栈、共享栈)、队列(任务调度、循环队列、双向队列、链队列)、数组(特殊矩阵、稀疏矩阵压缩)、串(朴素模式匹配、KMP算法、KMP优化算法)、树(先序遍历、线索二叉树、哈夫曼树等。 利用C++实现以下经典数据结构与算法:线性表(顺序表、链表、静态链表、三元组)、栈(双栈、共享栈)、队列(任务调度、循环队列、双向队列、链队列)、数组(特殊矩阵、稀疏矩阵压缩)、串(朴素模式匹配、KMP算法、KMP优化算法)、树(先序遍历、线索二叉树、哈夫曼树等。 利用C++实现以下经典数据结构与算法:线性表(顺序表、链表、静态链表、三元组)、栈(双栈、共享栈)、队列(任务调度、循环队列、双向队列、链队列)、数组(特殊矩阵、稀疏矩阵压缩)、串(朴素模式匹配、KMP算法、KMP优化算法)、树(先序遍历、线索二叉树、哈夫曼树等。 利用C++实现以下经典数据结构与算法:线性表(顺序表、链表、静态链表、三元组)、栈(双栈、共享栈)、队列(任务调度、循环队列、双向队列、链队列)、数组(特殊矩阵、稀疏矩阵压缩)、串(朴素模式匹配、KMP算法、KMP优化算法)、树(先序遍历、线索二叉树、哈夫曼树等。 利用C++实现以下经典数据结构与算法:线性表(顺序表、链表、静态链表、三元组)、栈(双栈、共享栈)、队列(任务调度、循环队列、双向队列、链队列)、数组(特殊矩阵、稀疏矩阵压缩)、串(朴素模式匹配、KMP算法、KMP优化算法)、树(先序遍历、线索二叉树、哈夫曼树等。 利用C++实现以下经典数据结构与算法:线性表(顺序表、链表、静态链表、三元组)、栈(双栈、共享栈)、队列(任务调度、循环队列、双向队列、链队列)、数组(特殊矩阵、稀疏矩阵压缩)、串(朴素模式匹配、KMP算法、KMP优化算法)、树(先序遍历、线索二叉树、哈夫曼树等。 利用C++实现以下经典数据结构与算法:线性表(顺序表、链表、静态链表、三元组)、栈(双栈、共享栈)、队列(任务调度、循环队列、双向队列、链队列)、数组(特殊矩阵、稀疏矩阵压缩)、串(朴素模式匹配、KMP算法、KMP优化算法)、树(先序遍历、线索二叉树、哈夫曼树等。 利用C++实现以下经典数据结构与算法:线性表(顺序表、链表、静态链表、三元组)、栈(双栈、共享栈)、队列(任务调度、循环队列、双向队列、链队列)、数组(特殊矩阵、稀疏矩阵压缩)、串(朴素模式匹配、KMP算法、KMP优化算法)、树(先序遍历、线索二叉树、哈夫曼树等。 利用C++实现以下经典数据结构与算法:线性表(顺序表、链表、静态链表、三元组)、栈(双栈、共享栈)、队列(任务调度、循环队列、双向队列、链队列)、数组(特殊矩阵、稀疏矩阵压缩)、串(朴素模式匹配、KMP算法、KMP优化算法)、树(先序遍历、线索二叉树、哈夫曼树等。 利用C++实现以下经典数据结构与算法:线性表(顺序表、链表、静态链表、三元组)、栈(双栈、共享栈)、队列(任务调度、循环队列、双向队列、链队列)、数组(特殊矩阵、稀疏矩阵压缩)、串(朴素模式匹配、KMP算法、KMP优化算法)、树(先序遍历、线索二叉树、哈夫曼树等。 利用C++实现以下经典数据结构与算法:线性表(顺序表、链表、静态链表、三元组)、栈(双栈、共享栈)、队列(任务调度、循环队列、双向队列、链队列)、数组(特殊矩阵、稀疏矩阵压缩)、串(朴素模式匹配、KMP算法、KMP优化算法)、树(先序遍历、线索二叉树、哈夫曼树等。 利用C++实现以下经典数据结构与算法:线性表(顺序表、链表、静态链表、三元组)、栈(双栈、共享栈)、队列(任务调度、循环队列、双向队列、链队列)、数组(特殊矩阵、稀疏矩阵压缩)、串(朴素模式匹配、KMP算法、KMP优化算法)、树(先序遍历、线索二叉树、哈夫曼树等。

最新推荐

recommend-type

C++实现两个有序数组的合并

双指针算法是指使用两个指针,分别指向两个数组的尾部,然后从后往前复制每个数字,从而减少移动的次数,提高效率。 以下是C++实现数组合并的示例代码: ```cpp int * insert(int *str1, int *str2, int n1, int n2...
recommend-type

C++数据结构与算法之双缓存队列实现方法详解

C++数据结构与算法之双缓存队列实现方法详解 本文主要介绍了C++数据结构与算法之双缓存队列实现方法,结合实例形式分析了双缓存队列的原理、实现方法与相关注意事项。 知识点一:双缓存队列的定义 双缓存队列是一...
recommend-type

C/C++读写注册表中二进制数据(代码示例)

C/C++读写注册表中二进制数据 Windows API 提供了一组函数来操作注册表中的键值对,包括读写二进制数据。下面我们将详细介绍使用 RegOpenKeyEx() 函数和 RegSetValueEx() 函数来实现对注册表某项写入二进制键值。 ...
recommend-type

C++ 数据结构之kmp算法中的求Next()函数的算法

该算法的主要思想是,通过构建一个Next数组,来记录每个位置上的最长相等前缀和后缀的长度,从而实现对目标字符串的高效匹配。 在KMP算法中,Next()函数是其核心组件之一,用于计算每个位置上的最长相等前缀和后缀...
recommend-type

C++实现string存取二进制数据的方法

总的来说,当在C++中使用string类处理二进制数据时,需特别注意空字符的影响,正确使用构造函数并传递数据长度,以确保数据的完整性和一致性。同时,理解string类的内部工作原理以及其与二进制数据交互时可能出现的...
recommend-type

前端协作项目:发布猜图游戏功能与待修复事项

资源摘要信息:"People-peephole-frontend是一个面向前端开发者的仓库,包含了一个由Rails和IOS团队在2015年夏季亚特兰大Iron Yard协作完成的项目。该仓库中的项目是一个具有特定功能的应用,允许用户通过iPhone或Web应用发布图像,并通过多项选择的方式让用户猜测图像是什么。该项目提供了一个互动性的平台,使用户能够通过猜测来获取分数,正确答案将提供积分,并防止用户对同一帖子重复提交答案。 当前项目存在一些待修复的错误,主要包括: 1. 答案提交功能存在问题,所有答案提交操作均返回布尔值true,表明可能存在逻辑错误或前端与后端的数据交互问题。 2. 猜测功能无法正常工作,这可能涉及到游戏逻辑、数据处理或是用户界面的交互问题。 3. 需要添加计分板功能,以展示用户的得分情况,增强游戏的激励机制。 4. 删除帖子功能存在损坏,需要修复以保证应用的正常运行。 5. 项目的样式过时,需要更新以反映跨所有平台的流程,提高用户体验。 技术栈和依赖项方面,该项目需要Node.js环境和npm包管理器进行依赖安装,因为项目中使用了大量Node软件包。此外,Bower也是一个重要的依赖项,需要通过bower install命令安装。Font-Awesome和Materialize是该项目用到的前端资源,它们提供了图标和界面组件,增强了项目的视觉效果和用户交互体验。 由于本仓库的主要内容是前端项目,因此JavaScript知识在其中扮演着重要角色。开发者需要掌握JavaScript的基础知识,以及可能涉及到的任何相关库或框架,比如用于开发Web应用的AngularJS、React.js或Vue.js。同时,对于iOS开发,可能还会涉及到Swift或Objective-C等编程语言,以及相应的开发工具Xcode。对于Rails,开发者则需要熟悉Ruby编程语言以及Rails框架的相关知识。 开发流程中可能会使用的其他工具包括: - Git:用于版本控制和代码管理。 - HTML/CSS:用于构建网页结构和样式。 - Webpack或Gulp:用于项目构建和优化流程。 - Babel:用于JavaScript代码的兼容性处理。 - Linting工具:如ESLint,用于代码质量检查和维护代码风格一致性。 总结来看,People-peephole-frontend项目不仅涉及到了跨平台协作的经验分享,还提供了前端开发的学习和实践机会,尤其在交互设计、前端工程化、依赖管理及样式设计等方面。开发者可以通过参与该项目的修复和完善工作,提高自身技能并积累宝贵的项目经验。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【高斯信道信号编码优化】:4大方法优化Chirp信号编码过程

![高斯信道下的chirp信号解调](https://img-blog.csdnimg.cn/d37646d14e4e4b51b01e617b59167c74.png) # 1. 高斯信道与Chirp信号编码基础 ## 简介 在现代通信领域,信息的传递无处不在,而保障信息传递的清晰与高效是通信技术的核心挑战之一。高斯信道作为通信系统中最常见和基础的模型,为我们理解和优化信号传输提供了重要的理论支持。Chirp信号,以其独特的频谱扩展特性,在无线通信、雷达和声纳系统中发挥着越来越重要的作用。本章将介绍高斯信道的特性以及Chirp信号的基础知识,为读者搭建起后续章节深入探讨优化方法的理论基础。
recommend-type

对给定图,实现图的深度优先遍历和广度优先遍历。以邻接表或邻接矩阵为存储结构,实现连通无向图的深度优先和广度优先遍历。以用户指定的结点为起点,分别输出每种遍历下的结点访问序列,并调试算法。使用C语言

在C语言中,我们可以使用邻接表或邻接矩阵来存储图的数据结构。这里我将简单介绍如何实现深度优先搜索(DFS)和广度优先搜索(BFS): **使用邻接表实现:** ```c #include <stdio.h> #include <stdlib.h> typedef struct Node { int val; struct Node* next; } Node; // 创建邻接列表表示图 Node* createAdjacencyList(int numNodes) { // 初始化节点数组 Node** adjList = malloc(sizeof(No
recommend-type

Spring框架REST服务开发实践指南

资源摘要信息: "在本教程中,我们将详细介绍如何使用Spring框架来构建RESTful Web服务,提供对Java开发人员的基础知识和学习参考。" 一、Spring框架基础知识 Spring是一个开源的Java/Java EE全功能栈(full-stack)应用程序框架和 inversion of control(IoC)容器。它主要分为以下几个核心模块: - 核心容器:包括Core、Beans、Context和Expression Language模块。 - 数据访问/集成:涵盖JDBC、ORM、OXM、JMS和Transaction模块。 - Web模块:提供构建Web应用程序的Spring MVC框架。 - AOP和Aspects:提供面向切面编程的实现,允许定义方法拦截器和切点来清晰地分离功能。 - 消息:提供对消息传递的支持。 - 测试:支持使用JUnit或TestNG对Spring组件进行测试。 二、构建RESTful Web服务 RESTful Web服务是一种使用HTTP和REST原则来设计网络服务的方法。Spring通过Spring MVC模块提供对RESTful服务的构建支持。以下是一些关键知识点: - 控制器(Controller):处理用户请求并返回响应的组件。 - REST控制器:特殊的控制器,用于创建RESTful服务,可以返回多种格式的数据(如JSON、XML等)。 - 资源(Resource):代表网络中的数据对象,可以通过URI寻址。 - @RestController注解:一个方便的注解,结合@Controller注解使用,将类标记为控制器,并自动将返回的响应体绑定到HTTP响应体中。 - @RequestMapping注解:用于映射Web请求到特定处理器的方法。 - HTTP动词(GET、POST、PUT、DELETE等):在RESTful服务中用于执行CRUD(创建、读取、更新、删除)操作。 三、使用Spring构建REST服务 构建REST服务需要对Spring框架有深入的理解,以及熟悉MVC设计模式和HTTP协议。以下是一些关键步骤: 1. 创建Spring Boot项目:使用Spring Initializr或相关构建工具(如Maven或Gradle)初始化项目。 2. 配置Spring MVC:在Spring Boot应用中通常不需要手动配置,但可以进行自定义。 3. 创建实体类和资源控制器:实体类映射数据库中的数据,资源控制器处理与实体相关的请求。 4. 使用Spring Data JPA或MyBatis进行数据持久化:JPA是一个Java持久化API,而MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。 5. 应用切面编程(AOP):使用@Aspect注解定义切面,通过切点表达式实现方法的拦截。 6. 异常处理:使用@ControllerAdvice注解创建全局异常处理器。 7. 单元测试和集成测试:使用Spring Test模块进行控制器的测试。 四、学习参考 - 国际奥委会:可能是错误的提及,对于本教程没有相关性。 - AOP:面向切面编程,是Spring的核心功能之一。 - MVC:模型-视图-控制器设计模式,是构建Web应用的常见架构。 - 道:在这里可能指学习之道,或者是学习Spring的原则和最佳实践。 - JDBC:Java数据库连接,是Java EE的一部分,用于在Java代码中连接和操作数据库。 - Hibernate:一个对象关系映射(ORM)框架,简化了数据库访问代码。 - MyBatis:一个半自动化的ORM框架,它提供了更细致的SQL操作方式。 五、结束语 以上内容为《learnSpring:学习春天》的核心知识点,涵盖了从Spring框架的基础知识、RESTful Web服务的构建、使用Spring开发REST服务的方法,以及与学习Spring相关的技术栈介绍。对于想要深入学习Java开发,特别是RESTful服务开发的开发者来说,这是一份非常宝贵的资源。