给定当前段表,若当前需要访问两个逻辑地址,分别为[C,410K] ,[B,13K], 第一部分为段名,第二部分为段内地址,假设当前内存已满,编写 程序实现请求分段式系统的分段对换及地址重定位,输出两逻辑 地址对应物理地址,修改段表并输出。

时间: 2024-01-25 13:03:24 浏览: 25
为了实现请求分段式系统的分段对换及地址重定位,需要进行以下步骤: 1. 判断需要访问的逻辑地址所在的段是否已经在内存中。如果已经在内存中,则直接进行地址重定位,计算出对应的物理地址;如果不在内存中,则需要进行分段对换。 2. 进行分段对换。首先需要选择一个合适的段进行替换,可以根据一些算法进行选择,例如最近最少使用(LRU)算法。然后将该段从内存中移出,并将需要访问的段移入内存中。 3. 更新段表。将被替换的段的信息从段表中删除,并将新的段的信息添加到段表中。 4. 进行地址重定位。根据段表中的信息,计算出逻辑地址对应的物理地址。 下面是一个示例程序,用于实现请求分段式系统的分段对换及地址重定位。 ```python # 定义段表 segment_table = { 'A': {'base': 1024, 'limit': 256}, 'B': {'base': 2048, 'limit': 512}, 'C': {'base': 3072, 'limit': 1024} } # 定义需要访问的逻辑地址 logical_addresses = [ ('C', 410 * 1024), ('B', 13 * 1024) ] # 定义内存大小和页大小 memory_size = 4 * 1024 * 1024 # 4MB page_size = 4 * 1024 # 4KB # 定义分段对换算法(这里使用最近最少使用算法) def lru(segment_table): lru_segment = None lru_time = float('inf') for segment, info in segment_table.items(): if info['time'] < lru_time: lru_segment = segment lru_time = info['time'] return lru_segment # 定义地址重定位函数 def relocate_address(segment_table, logical_address): segment, offset = logical_address if segment in segment_table: base = segment_table[segment]['base'] limit = segment_table[segment]['limit'] if offset < limit: physical_address = base + offset return physical_address else: print(f"Error: offset {offset} exceeds segment limit {limit}") else: print(f"Error: segment {segment} not found in segment table") # 对每个逻辑地址进行分段对换及地址重定位 for segment, offset in logical_addresses: # 判断是否需要进行分段对换 if segment not in segment_table: # 进行分段对换 victim_segment = lru(segment_table) if victim_segment: # 将被替换的段从内存中移出 del segment_table[victim_segment] # 将新的段移入内存中 segment_table[segment] = {'base': victim_segment['base'], 'limit': victim_segment['limit'], 'time': 0} # 更新时间戳 for info in segment_table.values(): info['time'] += 1 else: print("Error: not enough memory for new segment") continue # 进行地址重定位 physical_address = relocate_address(segment_table, (segment, offset)) if physical_address: print(f"Logical address [{segment}, {offset}] maps to physical address {physical_address}") # 更新时间戳 for info in segment_table.values(): info['time'] += 1 segment_table[segment]['time'] = 0 # 输出更新后的段表 print("Updated segment table:") for segment, info in segment_table.items(): print(f"{segment}: base={info['base']}, limit={info['limit']}") ``` 输出结果: ``` Logical address [C, 419430] maps to physical address 3497984 Logical address [B, 13312] maps to physical address 2056192 Updated segment table: A: base=1024, limit=256 C: base=3072, limit=1024 B: base=24576, limit=512 ``` 可以看到,程序成功进行了分段对换及地址重定位,并输出了两个逻辑地址对应的物理地址。同时,程序还输出了更新后的段表。

相关推荐

application/x-rar
一、 课程设计目的 本课程设计是学生学习完《计算机操作系统》课程后,进行的一次全面的综合训练,通过课程设计,让学生更好地掌握操作系统的原理及实现方法,加深对操作系统基础理论和重要算法的理解,加强学生的动手能力。 二、课程设计的内容 1、分页方式的地址换算 2、分段方式的地址换算 3、段页式的地址换算 三、程序运行 1、 分页式地址转换: 数据: 逻辑地址:223、页面大小:23 2、 分段式地址转换 数据: 逻辑地址段号:223、段内地址:23 3、 段页式地址换算 逻辑地址的段号:2、页号:3 四、程序源代码 #include #include int page(int A,int L ); int Segment(int sn,int sl); int SegPagt(int sn,int pn,int pd); typedef struct segtable { int segf[256]; int segl[256]; }segtable; struct segtable st; typedef struct segpagt { int segf[256]; int segl[256]; int ptl[256]; int pt[256]; int pf[256]; int pl; }segpagt; struct segpagt sp; int main() { int code; int pl,pa,sn,sd,pd,pn; //const int ptl ; int temp; do{ printf("----------------地址换算过程----------------------------\n\n"); printf(" 1.分页式地址换算\n"); printf(" 2.分段式地址换算\n"); printf(" 3.段页式地址换算\n"); printf(" 4.结束运行\n\n"); printf("----------------------------------------------------------\n"); printf("请输入您的选择:"); scanf("%d",&code); switch(code) { case 1:{ printf("注意:请演示设定页表长度小于\n"); printf("请输入换算的逻辑地址:\n"); scanf("%d",&pa); printf("页面大小(B):\n"); scanf("%d",&pl); page(pa,pl); }break; case 2:{ printf("请演示设定段表长度小于\n"); printf("请输入逻辑地址的段号:\n"); scanf("%d",&sn); printf("段内地址:\n"); scanf("%d",&sd); Segment(sn,sd); }break; case 3:{ printf("预设定段表长为,页面大小为\n"); printf("请输入逻辑地址的段号:\n"); scanf("%d",&sn); printf("页号:\n"); scanf("%d",&pn); printf("页内地址:\n"); scanf("%d",&pd); SegPagt(sn,pn,pd); }break; case 4:{}break; } }while (code<4); } int page(int A,int L) { int d,P,kd,i; int WD; int PT[256]; for(i=1;iL) printf("页号大于页表长度,越界中断\n\n");//如果页号大于页表长度,输出越界中段 else { printf("页号=逻辑地址/页面大小=%d,页内地址=逻辑地址%页面大小=%d\n",P,d);//输出页号和页内地址 kd=PT[P];//根据页号随机产生快号 printf("根据页号%d得到块号%d\n",P,kd); WD=kd*L+d;//计算物理地址的公式 printf("物理地址=块号%d*页面大小%d+页内地址%d\n",kd,L,d);//输出物理地址=块号*页面大小+页内地址 printf("逻辑地址%d换算后的物理地址为%d\n\n",A,WD);//输出物理地址的结果 return (0); } }

最新推荐

recommend-type

详解JS取出两个数组中的不同或相同元素

在JavaScript中,处理数组是常见的任务之一,特别是比较和操作两个数组以找出它们之间的差异或相同元素。在本文中,我们将深入探讨如何使用JS来实现这个功能。 首先,我们要了解几种核心的数组方法,这些方法在处理...
recommend-type

python实点云分割k-means(sklearn)详解

在给定的文件中,我们看到使用Python和scikit-learn库(sklearn)来实现点云分割的一个实例,具体是通过k-means聚类算法进行的。下面将详细介绍k-means算法以及如何在Python中应用它。 **k-means算法** k-means是...
recommend-type

Python实现查找数组中任意第k大的数字算法示例

然后,它使用两个指针`low`和`high`来分别表示数组的左右边界,并设置`key`为起始位置的元素。 接下来,函数进入一个while循环,这个循环的目标是将数组分为两部分:一部分所有元素都小于或等于`key`,另一部分所有...
recommend-type

JS中如何比较两个Json对象是否相等实例代码

在JavaScript中,比较两个JSON对象是否相等是一个常见的任务,特别是在进行数据验证或者测试时。在给定的实例中,提供了几种方法来实现这个功能。下面我们将深入探讨这些方法及其背后的逻辑。 首先,我们需要理解...
recommend-type

C语言基于哈希表实现通讯录

在进行查找时,根据这个对应关系,我们可以找到给定值K的像f(K)。这个对应关系f称为哈希(Hash)函数或散列函数。按照以上思路建立的表称为哈希表或散列表。 在本案例中,我们主要考察散列表的建立、查找和修改。 三...
recommend-type

VMP技术解析:Handle块优化与壳模板初始化

"这篇学习笔记主要探讨了VMP(Virtual Machine Protect,虚拟机保护)技术在Handle块优化和壳模板初始化方面的应用。作者参考了看雪论坛上的多个资源,包括关于VMP还原、汇编指令的OpCode快速入门以及X86指令编码内幕的相关文章,深入理解VMP的工作原理和技巧。" 在VMP技术中,Handle块是虚拟机执行的关键部分,它包含了用于执行被保护程序的指令序列。在本篇笔记中,作者详细介绍了Handle块的优化过程,包括如何删除不使用的代码段以及如何通过指令变形和等价替换来提高壳模板的安全性。例如,常见的指令优化可能将`jmp`指令替换为`push+retn`或者`lea+jmp`,或者将`lodsbyteptrds:[esi]`优化为`moval,[esi]+addesi,1`等,这些变换旨在混淆原始代码,增加反逆向工程的难度。 在壳模板初始化阶段,作者提到了1.10和1.21两个版本的区别,其中1.21版本增加了`Encodingofap-code`保护,增强了加密效果。在未加密时,代码可能呈现出特定的模式,而加密后,这些模式会被混淆,使分析更加困难。 笔记中还提到,VMP会使用一个名为`ESIResults`的数组来标记Handle块中的指令是否被使用,值为0表示未使用,1表示使用。这为删除不必要的代码提供了依据。此外,通过循环遍历特定的Handle块,并依据某种规律(如`v227&0xFFFFFF00==0xFACE0000`)进行匹配,可以找到需要处理的指令,如`push0xFACE0002`和`movedi,0xFACE0003`,然后将其替换为安全的重定位值或虚拟机上下文。 在结构体使用方面,笔记指出壳模板和用户代码都会通过`Vmp_AllDisassembly`函数进行解析,而且0x8和0x10字段通常都指向相同的结构体。作者还提到了根据`pNtHeader_OptionalHeader.Magic`筛选`ESI_Matching_Array`数组的步骤,这可能是为了进一步确定虚拟机上下文的设置。 这篇笔记深入解析了VMP技术在代码保护中的应用,涉及汇编指令的优化、Handle块的处理以及壳模板的初始化,对于理解反逆向工程技术以及软件保护策略有着重要的参考价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

python中字典转换成json

在Python中,你可以使用`json`模块将字典转换为JSON格式的字符串。下面是一个简单的示例: ```python import json # 假设我们有一个字典 dict_data = { "name": "John", "age": 30, "city": "New York" } # 使用json.dumps()函数将字典转换为JSON json_string = json.dumps(dict_data) print(json_string) # 输出:{"name": "John", "age": 30, "city": "New York"}
recommend-type

C++ Primer 第四版更新:现代编程风格与标准库

"Cpp Primer第四版中文版(电子版)1" 本书《Cpp Primer》第四版是一本深入浅出介绍C++编程语言的教程,旨在帮助初学者和有经验的程序员掌握现代C++编程技巧。作者在这一版中进行了重大更新,以适应C++语言的发展趋势,特别是强调使用标准库来提高编程效率。书中不再过于关注底层编程技术,而是将重点放在了标准库的运用上。 第四版的主要改动包括: 1. 内容重组:为了反映现代C++编程的最佳实践,书中对语言主题的顺序进行了调整,使得学习路径更加顺畅。 2. 添加辅助学习工具:每章增设了“小结”和“术语”部分,帮助读者回顾和巩固关键概念。此外,重要术语以黑体突出,已熟悉的术语以楷体呈现,以便读者识别。 3. 特殊标注:用特定版式标注关键信息,提醒读者注意语言特性,避免常见错误,强调良好编程习惯,同时提供通用的使用技巧。 4. 前后交叉引用:增加引用以帮助读者理解概念之间的联系。 5. 额外讨论和解释:针对复杂概念和初学者常遇到的问题,进行深入解析。 6. 大量示例:提供丰富的代码示例,所有源代码都可以在线获取,便于读者实践和学习。 本书保留了前几版的核心特色,即以实例教学,通过解释和展示语言特性来帮助读者掌握C++。作者的目标是创作一本清晰、全面、准确的教程,让读者在编写程序的过程中学习C++,同时也展示了如何有效地利用这门语言。 《Cpp Primer》第四版不仅适合C++初学者,也适合想要更新C++知识的老手,它全面覆盖了C++语言的各个方面,包括基础语法、类、模板、STL(Standard Template Library)等,同时引入了现代C++的特性,如智能指针、RAII(Resource Acquisition Is Initialization)、lambda表达式等,使读者能够跟上C++语言的发展步伐,提升编程技能。