nakagami通信系统自适应选择调制方式Q-learning算法实现matlab代码
时间: 2023-06-23 17:09:41 浏览: 192
以下是实现自适应选择调制方式Q-learning算法的Matlab代码:
```matlab
clc; clear all; close all;
%初始化
M = [2 4 8 16]; %调制阶数
EbN0dB = -10:2:20; %信噪比范围
alpha = 0.2; %学习速率
gamma = 0.9; %折扣因子
epsilon = 0.5; %探索概率
numEpisodes = 10000; %迭代次数
numRuns = 100; %运行次数
Q = zeros(length(M), length(EbN0dB), length(M)); %初始化Q表
cumulativeReward = zeros(numEpisodes, numRuns); %累计奖励
%循环运行
for run = 1:numRuns
for episode = 1:numEpisodes
currentState = randi(length(M)); %随机初始状态
currentEbN0dB = randi(length(EbN0dB));
cumulativeReward(episode,run) = 0;
while true
%选择动作
if rand <= epsilon
action = randi(length(M));
else
[~, action] = max(Q(currentState,currentEbN0dB,:));
end
%执行动作并计算奖励
[reward, nextState, nextEbN0dB] = nakagamiSimulate(currentState, M, EbN0dB(currentEbN0dB), M(action));
cumulativeReward(episode,run) = cumulativeReward(episode,run) + reward;
%更新Q表
[~, nextAction] = max(Q(nextState,nextEbN0dB,:));
Q(currentState,currentEbN0dB,action) = Q(currentState,currentEbN0dB,action) + alpha * (reward + gamma * Q(nextState,nextEbN0dB,nextAction) - Q(currentState,currentEbN0dB,action));
%更新状态和信噪比
currentState = nextState;
currentEbN0dB = find(EbN0dB==nextEbN0dB);
%终止条件
if reward == 1 || reward == -1
break;
end
end
end
end
%计算平均奖励
averageReward = mean(cumulativeReward, 2);
%绘制学习曲线
figure;
plot(averageReward);
xlabel('Episode');
ylabel('Average Reward');
title('Learning Curve');
%测试
currentState = randi(length(M));
currentEbN0dB = randi(length(EbN0dB));
numBits = 10000; %比特数
[numErrors, ber] = nakagamiTest(currentState, M, EbN0dB(currentEbN0dB), numBits);
%输出结果
fprintf('The selected modulation order is %d.\n', M(currentState));
fprintf('The selected SNR is %f dB.\n', EbN0dB(currentEbN0dB));
fprintf('The bit error rate is %f.\n', ber);
```
其中,nakagamiSimulate和nakagamiTest分别为仿真和测试函数,可以根据具体需求自行编写。
阅读全文