修改#include<stdio.h> int main(void) { int a,b,c; float d,m; printf("输入成绩:"); scanf("%d,&a"); printf("输入成绩:"); scanf("%d,&b"); printf("输入成绩:"); scanf("%d,&c"); m=(a+b+c)/3; printf("成绩总分: %5.2f\n",m); return 0; }

时间: 2023-05-18 07:05:41 浏览: 89
修改是指对原有的内容、形式、结构等进行改动或调整,以达到更好的效果或适应不同的需求。修改可以应用于各种文本、图像、音频、视频等形式的作品,也可以用于软件、网站等技术产品的开发和维护。在写作、编辑、翻译、校对等领域,修改是一个重要的工作环节,可以提高作品的质量和可读性。
相关问题

#include<stdio.h> int main(void) { //定义一个常量 const修饰的变量成为常量 const float pi = 3.14159; pi = 3.14; printf(“%f\n”,pi); return 0; }

这段代码是使用C语言编写的一个简单的程序,它的主要功能是尝试修改一个被`const`修饰的变量的值,并打印该变量。`const`关键字在C语言中用于定义常量,一旦初始化后其值不可更改。下面是代码的具体解释: ```c #include<stdio.h> // 引入标准输入输出库 int main(void) { // 定义一个常量,const修饰的变量成为常量 const float pi = 3.14159; // 下面这行尝试对常量pi进行赋值,这是不允许的,因此会产生编译错误 pi = 3.14; // 这里会产生编译错误,因为pi是常量 // 如果编译器允许修改,下面这行代码将打印出修改后的pi值 printf(“%f\n”,pi); // 注意这里的引号是中文引号,应该是英文引号 return 0; } ``` 在这个程序中,`pi`是一个被`const`修饰的浮点常量,所以它不能被修改。尝试修改`pi`的值(`pi = 3.14;`)会导致编译错误。如果这个赋值操作被允许执行,程序将会打印出修改后的`pi`值,但由于`pi`是常量,这一行实际上是无效的,程序将不会编译通过。 如果这段代码没有错误,输出结果将会是`pi`的初始值,即`3.141590`,但是由于`pi`是一个常量并且尝试修改它,实际上程序不会运行到`printf`这一行,编译时就会出现错误。

用c语言帮我写一份代码,要求能够进行位图的自定义比例缩放、自定义角度旋转,前提是使用windows.h#include <stdio.h> #include <stdlib.h> #include <stdint.h> #include <math.h>库,不能使用opencv库

当使用C语言进行位图的自定义比例缩放和自定义角度旋转时,可以按照以下步骤进行: 1. 读取位图文件:使用`windows.h`库中的函数来读取位图文件,并获取位图的宽度、高度和像素数据。 2. 自定义比例缩放:根据用户输入的比例因子,计算出缩放后的目标宽度和高度。然后,根据缩放后的目标宽度和高度,对原始位图的像素数据进行插值计算,生成缩放后的位图像素数据。 3. 自定义角度旋转:根据用户输入的旋转角度,计算出旋转后的目标宽度和高度。然后,根据旋转后的目标宽度和高度,对缩放后的位图进行旋转操作,生成旋转后的位图像素数据。 4. 保存位图文件:使用`windows.h`库中的函数将旋转后的位图像素数据保存为新的位图文件。 下面是一个示例代码,演示了如何使用C语言进行位图的自定义比例缩放和自定义角度旋转: ```c #include <stdio.h> #include <stdlib.h> #include <stdint.h> #include <math.h> #include <windows.h> // 位图文件头结构体 typedef struct { uint16_t bfType; // 文件类型,必须为0x4D42 uint32_t bfSize; // 文件大小 uint16_t bfReserved1; // 保留,必须为0 uint16_t bfReserved2; // 保留,必须为0 uint32_t bfOffBits; // 位图数据的起始位置 } BMPFileHeader; // 位图信息头结构体 typedef struct { uint32_t biSize; // 信息头大小,必须为40 int32_t biWidth; // 图像宽度 int32_t biHeight; // 图像高度 uint16_t biPlanes; // 位平面数,必须为1 uint16_t biBitCount; // 每个像素的位数 uint32_t biCompression; // 压缩类型,0表示不压缩 uint32_t biSizeImage; // 图像大小,字节为单位 int32_t biXPelsPerMeter;// 水平分辨率,像素每米 int32_t biYPelsPerMeter;// 垂直分辨率,像素每米 uint32_t biClrUsed; // 使用的颜色数,如果为0,则使用所有调色板项 uint32_t biClrImportant;// 重要的颜色数,如果为0,则所有颜色都重要 } BMPInfoHeader; // 自定义比例缩放函数 void scaleBitmap(uint8_t* srcData, int srcWidth, int srcHeight, uint8_t* dstData, int dstWidth, int dstHeight) { float scaleX = (float)srcWidth / dstWidth; float scaleY = (float)srcHeight / dstHeight; for (int y = 0; y < dstHeight; y++) { for (int x = 0; x < dstWidth; x++) { int srcX = (int)(x * scaleX); int srcY = (int)(y * scaleY); dstData[y * dstWidth + x] = srcData[srcY * srcWidth + srcX]; } } } // 自定义角度旋转函数 void rotateBitmap(uint8_t* srcData, int srcWidth, int srcHeight, uint8_t* dstData, int dstWidth, int dstHeight, float angle) { float centerX = (float)srcWidth / 2; float centerY = (float)srcHeight / 2; float radian = angle * M_PI / 180.0; for (int y = 0; y < dstHeight; y++) { for (int x = 0; x < dstWidth; x++) { float srcX = (x - centerX) * cos(radian) - (y - centerY) * sin(radian) + centerX; float srcY = (x - centerY) * cos(radian) + centerY; if (srcX >= 0 && srcX < srcWidth && srcY >= 0 && srcY < srcHeight) { int p1x = (int)srcX; int p1y = (int)srcY; int p2x = p1x + 1; int p2y = p1y + 1; uint8_t p1 = srcData[p1y * srcWidth + p1x]; uint8_t p2 = srcData[p1y * srcWidth + p2x]; uint8_t p3 = srcData[p2y * srcWidth + p1x]; uint8_t p4 = srcData[p2y * srcWidth + p2x]; float dx = srcX - p1x; float dy = srcY - p1y; dstData[y * dstWidth + x] = (uint8_t)((1 - dx) * (1 - dy) * p1 + dx * (1 - dy) * p2 + (1 - dx) * dy * p3 + dx * dy * p4); } } } } int main() { // 读取位图文件 FILE* file = fopen("input.bmp", "rb"); if (file == NULL) { printf("Failed to open input.bmp\n"); return 0; } BMPFileHeader fileHeader; BMPInfoHeader infoHeader; fread(&fileHeader, sizeof(BMPFileHeader), 1, file); fread(&infoHeader, sizeof(BMPInfoHeader), 1, file); int width = infoHeader.biWidth; int height = infoHeader.biHeight; int dataSize = width * height; uint8_t* srcData = (uint8_t*)malloc(dataSize); uint8_t* dstData = (uint8_t*)malloc(dataSize); fread(srcData, dataSize, 1, file); fclose(file); // 自定义比例缩放 int scaleWidth = width / 2; int scaleHeight = height / 2; scaleBitmap(srcData, width, height, dstData, scaleWidth, scaleHeight); // 自定义角度旋转 int rotateWidth = scaleWidth; int rotateHeight = scaleHeight; float angle = 45.0; rotateBitmap(dstData, scaleWidth, scaleHeight, dstData, rotateWidth, rotateHeight, angle); // 保存位图文件 file = fopen("output.bmp", "wb"); if (file == NULL) { printf("Failed to create output.bmp\n"); return 0; } fwrite(&fileHeader, sizeof(BMPFileHeader), 1, file); fwrite(&infoHeader, sizeof(BMPInfoHeader), 1, file); fwrite(dstData, dataSize, 1, file); fclose(file); free(srcData); free(dstData); printf("Bitmap scaling and rotation completed!\n"); return 0; } ``` 请注意,上述代码仅为示例,可能需要根据实际情况进行适当修改和优化。另外,该代码仅支持处理24位色深的位图文件。如果需要处理其他色深的位图文件,可能需要进行相应的修改。

相关推荐

最新推荐

recommend-type

基于opencv实现象棋识别及棋谱定位python源码+数据集-人工智能课程设计

基于opencv实现象棋识别及棋谱定位python源码+数据集-人工智能课程设计,含有代码注释,满分课程设计资源,新手也可看懂,期末大作业、课程设计、高分必看,下载下来,简单部署,就可以使用。该项目可以作为课程设计期末大作业使用,该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。 基于opencv实现象棋识别及棋谱定位python源码+数据集-人工智能课程设计,含有代码注释,满分课程设计资源,新手也可看懂,期末大作业、课程设计、高分必看,下载下来,简单部署,就可以使用。该项目可以作为课程设计期末大作业使用,该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。 基于opencv实现象棋识别及棋谱定位python源码+数据集-人工智能课程设计,含有代码注释,满分课程设计资源,新手也可看懂,期末大作业、课程设计、高分必看,下载下来,简单部署,就可以使用。该项目可以作为课程设计期末大作业使用,该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。基于opencv实现象棋识别及棋谱定位python源码+数据集
recommend-type

基于Python实现的Cowrie蜜罐设计源码

该项目为基于Python实现的Cowrie蜜罐设计源码,共计380个文件,涵盖166个Python源代码文件,以及包括RST、SQL、YAML、Markdown等多种类型的配置和文档文件。Cowrie蜜罐是一款用于记录暴力攻击和攻击者执行的SSH及Telnet交互的中等交互式蜜罐。
recommend-type

QT 摄像头获取每一帧图像数据以及opencv获取清晰度

QT 摄像头获取每一帧图像数据以及opencv获取清晰度
recommend-type

基于asp.net的(CS)地震预测系统设计与实现.docx

基于asp.net的(CS)地震预测系统设计与实现.docx
recommend-type

IPQ4019 QSDK开源代码资源包发布

资源摘要信息:"IPQ4019是高通公司针对网络设备推出的一款高性能处理器,它是为需要处理大量网络流量的网络设备设计的,例如无线路由器和网络存储设备。IPQ4019搭载了强大的四核ARM架构处理器,并且集成了一系列网络加速器和硬件加密引擎,确保网络通信的速度和安全性。由于其高性能的硬件配置,IPQ4019经常用于制造高性能的无线路由器和企业级网络设备。 QSDK(Qualcomm Software Development Kit)是高通公司为了支持其IPQ系列芯片(包括IPQ4019)而提供的软件开发套件。QSDK为开发者提供了丰富的软件资源和开发文档,这使得开发者可以更容易地开发出性能优化、功能丰富的网络设备固件和应用软件。QSDK中包含了内核、驱动、协议栈以及用户空间的库文件和示例程序等,开发者可以基于这些资源进行二次开发,以满足不同客户的需求。 开源代码(Open Source Code)是指源代码可以被任何人查看、修改和分发的软件。开源代码通常发布在公共的代码托管平台,如GitHub、GitLab或SourceForge上,它们鼓励社区协作和知识共享。开源软件能够通过集体智慧的力量持续改进,并且为开发者提供了一个测试、验证和改进软件的机会。开源项目也有助于降低成本,因为企业或个人可以直接使用社区中的资源,而不必从头开始构建软件。 U-Boot是一种流行的开源启动加载程序,广泛用于嵌入式设备的引导过程。它支持多种处理器架构,包括ARM、MIPS、x86等,能够初始化硬件设备,建立内存空间的映射,从而加载操作系统。U-Boot通常作为设备启动的第一段代码运行,它为系统提供了灵活的接口以加载操作系统内核和文件系统。 标题中提到的"uci-2015-08-27.1.tar.gz"是一个开源项目的压缩包文件,其中"uci"很可能是指一个具体项目的名称,比如U-Boot的某个版本或者是与U-Boot配置相关的某个工具(U-Boot Config Interface)。日期"2015-08-27.1"表明这是该项目的2015年8月27日的第一次更新版本。".tar.gz"是Linux系统中常用的归档文件格式,用于将多个文件打包并进行压缩,方便下载和分发。" 描述中复述了标题的内容,强调了文件是关于IPQ4019处理器的QSDK资源,且这是一个开源代码包。此处未提供额外信息。 标签"软件/插件"指出了这个资源的性质,即它是一个软件资源,可能包含程序代码、库文件或者其他可以作为软件一部分的插件。 在文件名称列表中,"uci-2015-08-27.1"与标题保持一致,表明这是一个特定版本的软件或代码包。由于实际的文件列表中只提供了这一项,我们无法得知更多的文件信息,但可以推测这是一个单一文件的压缩包。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【PDF表格创建与编辑】:使用Apache PDFBox和iText库制作表格,表格处理不求人

![java 各种pdf处理常用库介绍与使用](https://img-blog.csdnimg.cn/img_convert/6ae15afdef45b1d8fe6d289f0065d18c.png) # 1. PDF表格创建与编辑概述 在当今数字化时代,PDF格式因其可移植性和可维护性成为了电子文档的首选。在诸多应用场景中,表格作为一种重要的信息传递工具,其创建与编辑的需求日益增长。本章节将为读者提供一个关于PDF表格创建与编辑的概述,为后续章节中使用Apache PDFBox和iText库进行深入探讨奠定基础。 ## 1.1 PDF表格的作用与重要性 PDF表格在商务沟通、数据分析
recommend-type

python输出txt文件

在Python中,你可以使用内置的`open()`函数来创建和写入TXT文件。下面是一个简单的例子: ```python # 打开文件(如果不存在则创建) with open('example.txt', 'w') as file: # 写入文本内容 file.write('这是你要写入的内容') # 如果你想追加内容而不是覆盖原有文件 # 使用 'a' 模式(append) # with open('example.txt', 'a') as file: # file.write('\n这是追加的内容') # 关闭文件时会自动调用 `close()` 方法,但使
recommend-type

高频组电赛必备:掌握数字频率合成模块要点

资源摘要信息:"2022年电赛 高频组必备模块 数字频率合成模块" 数字频率合成(DDS,Direct Digital Synthesis)技术是现代电子工程中的一种关键技术,它允许通过数字方式直接生成频率可调的模拟信号。本模块是高频组电赛参赛者必备的组件之一,对于参赛者而言,理解并掌握其工作原理及应用是至关重要的。 本数字频率合成模块具有以下几个关键性能参数: 1. 供电电压:模块支持±5V和±12V两种供电模式,这为用户提供了灵活的供电选择。 2. 外部晶振:模块自带两路输出频率为125MHz的外部晶振,为频率合成提供了高稳定性的基准时钟。 3. 输出信号:模块能够输出两路频率可调的正弦波信号。其中,至少有一路信号的幅度可以编程控制,这为信号的调整和应用提供了更大的灵活性。 4. 频率分辨率:模块提供的频率分辨率为0.0291Hz,这样的精度意味着可以实现非常精细的频率调节,以满足高频应用中的严格要求。 5. 频率计算公式:模块输出的正弦波信号频率表达式为 fout=(K/2^32)×CLKIN,其中K为设置的频率控制字,CLKIN是外部晶振的频率。这一计算方式表明了频率输出是通过编程控制的频率控制字来设定,从而实现高精度的频率合成。 在高频组电赛中,参赛者不仅需要了解数字频率合成模块的基本特性,还应该能够将这一模块与其他模块如移相网络模块、调幅调频模块、AD9854模块和宽带放大器模块等结合,以构建出性能更优的高频信号处理系统。 例如,移相网络模块可以实现对信号相位的精确控制,调幅调频模块则能够对信号的幅度和频率进行调整。AD9854模块是一种高性能的DDS芯片,可以用于生成复杂的波形。而宽带放大器模块则能够提供足够的增益和带宽,以保证信号在高频传输中的稳定性和强度。 在实际应用中,电赛参赛者需要根据项目的具体要求来选择合适的模块组合,并进行硬件的搭建与软件的编程。对于数字频率合成模块而言,还需要编写相应的控制代码以实现对K值的设定,进而调节输出信号的频率。 交流与讨论在电赛准备过程中是非常重要的。与队友、指导老师以及来自同一领域的其他参赛者进行交流,不仅可以帮助解决技术难题,还可以相互启发,激发出更多创新的想法和解决方案。 总而言之,对于高频组的电赛参赛者来说,数字频率合成模块是核心组件之一。通过深入了解和应用该模块的特性,结合其他模块的协同工作,参赛者将能够构建出性能卓越的高频信号处理设备,从而在比赛中取得优异成绩。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依