Transformer模型代码实现
时间: 2023-05-21 21:02:17 浏览: 265
Pytorch_Code_for_Medical_Transformer_Gated_Axial_
以下是一个简单的Transformer模型的代码实现:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class Transformer(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, num_layers, num_heads, dropout):
super().__init__()
self.embedding = nn.Embedding(input_dim, hidden_dim)
self.pos_encoding = PositionalEncoding(hidden_dim, dropout)
self.encoder_layers = nn.ModuleList([EncoderLayer(hidden_dim, num_heads, dropout) for _ in range(num_layers)])
self.decoder_layers = nn.ModuleList([DecoderLayer(hidden_dim, num_heads, dropout) for _ in range(num_layers)])
self.fc_out = nn.Linear(hidden_dim, output_dim)
self.dropout = nn.Dropout(dropout)
self.scale = torch.sqrt(torch.FloatTensor([hidden_dim])).to(device)
def forward(self, src, trg, src_mask, trg_mask):
src_emb = self.dropout(self.embedding(src) * self.scale)
trg_emb = self.dropout(self.embedding(trg) * self.scale)
src_emb = self.pos_encoding(src_emb)
trg_emb = self.pos_encoding(trg_emb)
for layer in self.encoder_layers:
src_emb = layer(src_emb, src_mask)
for layer in self.decoder_layers:
trg_emb = layer(trg_emb, src_emb, trg_mask, src_mask)
output = self.fc_out(trg_emb)
return output
```
这个模型包含了一个嵌入层、位置编码层、多层编码器和多层解码器。它可以用于序列到序列的任务,如机器翻译。
阅读全文