focal loss的tf代码
时间: 2023-10-30 15:15:49 浏览: 133
以下是使用TensorFlow实现Focal Loss的代码:
```python
import tensorflow as tf
def focal_loss(y_true, y_pred, alpha=0.25, gamma=2.0):
"""
Focal Loss for multi-class classification
:param y_true: true labels, shape of [batch_size, num_classes]
:param y_pred: predicted labels, shape of [batch_size, num_classes]
:param alpha: balance parameter for adjusting the impact of different classes, default to 0.25
:param gamma: focusing parameter for emphasizing hard examples, default to 2.0
:return: focal loss
"""
# convert y_true to one-hot encoding
y_true = tf.one_hot(tf.cast(y_true, tf.int32), depth=y_pred.shape[-1])
# compute cross entropy
ce = tf.losses.categorical_crossentropy(y_true, y_pred, from_logits=True)
# compute softmax probabilities
probs = tf.nn.softmax(y_pred, axis=-1)
# get the probabilities of true labels
p_t = tf.reduce_sum(y_true * probs, axis=-1)
# compute the weight for each sample
weights = alpha * y_true + (1 - alpha) * (1 - y_true)
# compute the focal loss for each sample
fl = -weights * tf.pow(1 - p_t, gamma) * ce
# compute the mean focal loss over all samples
return tf.reduce_mean(fl)
```
该函数接受两个参数,`y_true`和`y_pred`,分别代表真实标签和预测标签。此外,还可以调整两个超参数`alpha`和`gamma`,分别代表类别权重平衡和难样本的加权系数。函数内部首先将`y_true`转换为one-hot编码,然后计算交叉熵,并使用softmax函数将预测标签转换为概率值。接着计算每个样本的权重,然后根据公式计算每个样本的focal loss,并最后求出平均focal loss。
阅读全文