select count(*) as count2, sum(count1) as coun3 from (select 1 , case when is_pdcp_busy_week =1 then 1 else 0 end as count1 from d_wx_expansion_oarea2023 )t union all SELECT COUNT(DISTINCT CASE WHEN unique_id_station IS NOT NULL THEN unique_id_station END) as count1, COUNT(DISTINCT CASE WHEN is_pdcp_busy_week = 1 AND unique_id_station IS NOT NULL THEN unique_id_station END) as count4 FROM d_wx_expansion_oarea2023将结果分别展示

时间: 2024-04-03 08:35:54 浏览: 71
对于第一个 SQL 查询,结果展示如下: | count2 | count3 | |--------|--------| | 1 | count1的总和 | 其中,count2 的值为 1,表示只有一条结果。count3 的值为 count1 的总和,表示 is_pdcp_busy_week 为 1 的记录数。 对于第二个 SQL 查询,结果展示如下: | count1 | count4 | |--------|--------| | 不为空的 unique_id_station 记录数 | is_pdcp_busy_week 为 1 且 unique_id_station 不为空的记录数 | 其中,count1 的值为不为空的 unique_id_station 记录数,count4 的值为 is_pdcp_busy_week 为 1 且 unique_id_station 不为空的记录数。注意,这里使用了 DISTINCT 关键字,表示去重后的记录数。
相关问题

条件1.使用stm32f103c8t6,c语言编程条件2.使用PA1,PA2,PA3,PA4,PA5,PA6配置成上拉输入,根据6个引脚的电平高低生成。例如000000表示6引脚电平全为0,统计该二进制数中0的次数记作zeo_count;将该二进制数转成16进制数,并作为条件3中的数据。条件3.串口1发数据,满足串口数据校验 (包头0xee)(数据长度)(...数据...)(数据长度反码)(包尾0xef),按照串口协议通信发送条件2中的二进制数;串口1收数据,满足串口数据校验 (包头0xee)(数据长度)(...数据...)(数据长度反码)(包尾0xef);不满足重新接收。直到成功接收。条件4.规定zeo_count_old.默认值为6;若串口1接收数据为“0xee0x010x010x010xef”则zeo_count_old=1;若串口1接收数据为“0xee0x010x020x010xef”则zeo_count_old=2;若串口1接收数据为“0xee0x010x030x010xef”则zeo_count_old=3;若串口1接收数据为“0xee0x010x040x010xef”则zeo_count_old=4;若串口1接收数据为“0xee0x010x050x010xef”则zeo_count_old=5;若串口1接收数据为“0xee0x010x060x010xef”则zeo_count_old=6;条件5.若zeo_count_old大于zeo_count,打开蜂鸣器;则若zeo_count_old小于zeo_count,串口发送字符串"规定设备未取完",等待1分钟后将zeo_count_old更新为zeo_coun的值;若zeo_count_old等于zeo_count,串口发送字符串"设备数量正常";

以下是参考代码,仅供参考,需要根据实际情况进行修改: ``` #include "stm32f10x.h" #include "stdio.h" #define BUFSIZE 100 uint16_t zero_count_old = 6; uint16_t zero_count = 0; uint8_t uart_buf[BUFSIZE]; uint8_t uart_buf_index = 0; void USART1_IRQHandler(void) { uint8_t ch; if (USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) { ch = USART_ReceiveData(USART1); if (uart_buf_index == 0 && ch != 0xee) { return; } uart_buf[uart_buf_index++] = ch; if (uart_buf_index == 4) { if (uart_buf[1] != 0x01 || uart_buf[2] > 0x06) { // 数据长度不对,重新接收 uart_buf_index = 0; } } else if (uart_buf_index == uart_buf[1]+4) { uint8_t sum = 0; for (uint8_t i = 0; i < uart_buf[1]+2; i++) { sum += uart_buf[i]; } sum = ~sum; if (sum != uart_buf[uart_buf_index-2] || uart_buf[uart_buf_index-1] != 0xef) { // 校验错误,重新接收 uart_buf_index = 0; } else { // 收到正确的数据,更新 zero_count_old zero_count_old = uart_buf[2]; uart_buf_index = 0; } } } } void delay_ms(uint32_t ms) { for (uint32_t i = 0; i < ms*8000; i++); } void init_uart(void) { GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; NVIC_InitTypeDef NVIC_InitStructure; // 打开 GPIO 和 USART1 时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO | RCC_APB2Periph_USART1, ENABLE); // 配置 USART1 引脚 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; GPIO_Init(GPIOA, &GPIO_InitStructure); // 配置 USART1 USART_InitStructure.USART_BaudRate = 115200; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx; USART_Init(USART1, &USART_InitStructure); // 配置 USART1 中断 NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); // 打开 USART1 USART_Cmd(USART1, ENABLE); } void init_gpio(void) { GPIO_InitTypeDef GPIO_InitStructure; // 打开 GPIO 时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); // 配置 PA1-PA6 为上拉输入 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; GPIO_Init(GPIOA, &GPIO_InitStructure); } uint8_t get_gpio_value(void) { uint8_t value = 0; for (uint8_t i = 1; i <= 6; i++) { if (GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_0+i)) { value |= (1<<(6-i)); } } return value; } void send_data(uint8_t *data, uint8_t len) { uint8_t sum = 0; USART_SendData(USART1, 0xee); USART_SendData(USART1, len); for (uint8_t i = 0; i < len; i++) { USART_SendData(USART1, data[i]); sum += data[i]; } sum = ~sum; USART_SendData(USART1, sum); USART_SendData(USART1, 0xef); } int main(void) { init_gpio(); init_uart(); while (1) { zero_count = __builtin_popcount(get_gpio_value()); if (zero_count_old > zero_count) { // 打开蜂鸣器 } if (zero_count_old < zero_count) { send_data("规定设备未取完", sizeof("规定设备未取完")-1); delay_ms(60000); // 等待 1 分钟 zero_count_old = zero_count; } if (zero_count_old == zero_count) { send_data("设备数量正常", sizeof("设备数量正常")-1); } delay_ms(1000); } } ```

if (usart1_task)//上位机发来数据 { /*编码后发给有人模块(串口8)*/ USART_SendBytes(USART8, usr_buf, encodeing(usart1_buf, usr_buf, usart1_counter, CENTRAL_TO_TERMINAL)); uint8_t data = 0xFF; USART_SendBytes(USART1, &data, 1); waiting_back_tim = 60; waiting_back = 1;//等待回示 usart1_counter = 0; usart1_task = 0; } if (usart8_task)//有人模块发来数据没有处理完,每处理完一帧减一 { /*解码数据,并根据功能码执行*/ rd_fifo_is = 1; while (rd_fifo_is) { fifo_read(&usart8_fifo, &rd_fifo_tmp, 1);//从环队读取一个数据 switch (rd_fifo_tmp)//判断数据内容 { case HEAD: rd_fifo_coun = 0; break; case END: rd_fifo_is = 0; //结束循环 break; case ESCAPE://转义符,下个数据需要转义 escape = 1; break; default: if (escape) { rd_fifo_buf[rd_fifo_coun++] = rd_fifo_tmp ^ 0x30; escape = 0; } else { rd_fifo_buf[rd_fifo_coun++] = rd_fifo_tmp; } break; } }

这也是一段代码,主要是用于处理串口数据的收发。当接收到来自上位机的数据时,代码会对数据进行编码,并通过串口8发送给“有人模块”,并等待“有人模块”的返回。同时,代码会将接收缓冲区计数器清零,并将任务标志位清零。当接收到来自“有人模块”的数据时,代码会对数据进行解码,并根据功能码执行相应的操作。此处使用了FIFO缓冲区来完成数据的读写操作。具体而言,代码会不断从FIFO缓冲区中读取数据,并根据数据内容进行相应的处理,直到读取到结束符(END)为止。并且在解码时,还考虑了转义符(ESCAPE)的情况,从而确保数据的正确性。
阅读全文

相关推荐

最新推荐

recommend-type

MySQL中count(*)、count(1)和count(col)的区别汇总

2. COUNT(1) COUNT(1)看起来与COUNT(*)相似,但实际上它们在内部处理上略有不同。COUNT(1)表示统计每一行,无论该行的任何列的值是否为NULL。尽管在大多数情况下,COUNT(*)和COUNT(1)的结果相同,但理论上COUNT(1)...
recommend-type

多功能波形发生器VHDL程序与仿真

`qqq`、`qq`、`tmp`、`coun`、`coun0`、`b`和`c`等变量用于计数和计算,以生成不同频率和幅度的波形。`z`和`con`跟踪存储器中的地址,`f`、`amp`、`amp0`和`d`等变量则用于表示输出波形的特性。 这个设计使用内部...
recommend-type

基于java+springboot+mysql+微信小程序的流浪动物救助小程序 源码+数据库+论文(高分毕业设计).zip

项目已获导师指导并通过的高分毕业设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 包含:项目源码、数据库脚本、软件工具等,该项目可以作为毕设、课程设计使用,前后端代码都在里面。 该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。 项目都经过严格调试,确保可以运行!可以放心下载 技术组成 语言:java 开发环境:idea、微信开发者工具 数据库:MySql5.7以上 部署环境:maven 数据库工具:navicat
recommend-type

基于springboot的体质测试数据分析及可视化设计源码(java毕业设计完整源码+LW).zip

项目均经过测试,可正常运行! 环境说明: 开发语言:java JDK版本:jdk1.8 框架:springboot 数据库:mysql 5.7/8 数据库工具:navicat 开发软件:eclipse/idea
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依