EEMD-BO-LSTM
时间: 2023-12-07 19:39:31 浏览: 164
LSTM
5星 · 资源好评率100%
EEMD-BO-LSTM是一种用于时间序列预测的深度学习模型,它结合了经验模态分解(EEMD)、Bagging-Optimization(BO)和长短时记忆网络(LSTM)三种技术。下面是EEMD-BO-LSTM的详细介绍:
1. 经验模态分解(EEMD)是一种信号处理技术,它可以将非线性和非平稳信号分解成若干个固有模态函数(IMF),每个IMF都代表了信号中的一个特定频率范围内的振动模式。EEMD通过对信号进行多次分解,可以得到更加精细的IMF分量。
2. Bagging-Optimization(BO)是一种集成学习技术,它通过对多个模型进行训练和组合,来提高模型的预测性能。BO算法通过对模型的超参数进行优化,来提高模型的泛化能力和鲁棒性。
3. 长短时记忆网络(LSTM)是一种递归神经网络,它可以有效地处理时间序列数据,并且能够捕捉到序列中的长期依赖关系。LSTM通过使用门控单元来控制信息的流动,从而避免了梯度消失和梯度爆炸的问题。
EEMD-BO-LSTM模型的基本思路是:首先使用EEMD对原始时间序列进行分解,得到多个IMF分量;然后对每个IMF分量分别训练一个LSTM模型,并使用BO算法对LSTM模型的超参数进行优化;最后将多个LSTM模型的预测结果进行加权平均,得到最终的预测结果。
下面是EEMD-BO-LSTM模型的代码实现:
```python
# 导入必要的库
import numpy as np
from pyeemd import EEMD
from keras.models import Sequential
from keras.layers import LSTM, Dense
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
# 定义EEMD-BO-LSTM模型类
class EEMD_BO_LSTM:
def __init__(self, n_imfs=5, n_estimators=10, max_depth=5, n_epochs=100, batch_size=32):
self.n_imfs = n_imfs
self.n_estimators = n_estimators
self.max_depth = max_depth
self.n_epochs = n_epochs
self.batch_size = batch_size
self.eemd = EEMD()
self.scaler = MinMaxScaler()
self.models = []
# 定义训练模型的方法
def fit(self, X, y):
# 对原始数据进行归一化处理
X = self.scaler.fit_transform(X)
y = self.scaler.fit_transform(y.reshape(-1, 1))
# 使用EEMD对原始数据进行分解
imfs = self.eemd.eemd(X, self.n_imfs)
# 训练多个LSTM模型
for i in range(self.n_imfs):
X_imf = imfs[i].reshape(-1, 1)
X_train, X_test, y_train, y_test = train_test_split(X_imf, y, test_size=0.2, shuffle=False)
model = Sequential()
model.add(LSTM(self.max_depth, input_shape=(1, 1)))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(X_train.reshape(-1, 1, 1), y_train, epochs=self.n_epochs, batch_size=self.batch_size, verbose=0)
self.models.append(model)
# 定义预测方法
def predict(self, X):
# 对原始数据进行归一化处理
X = self.scaler.transform(X)
# 使用EEMD对原始数据进行分解
imfs = self.eemd.eemd(X, self.n_imfs)
# 对每个IMF分量分别进行预测
y_pred = np.zeros((X.shape[0], 1))
for i in range(self.n_imfs):
X_imf = imfs[i].reshape(-1, 1)
y_pred_imf = self.models[i].predict(X_imf.reshape(-1, 1, 1))
y_pred += y_pred_imf
# 对多个LSTM模型的预测结果进行加权平均
y_pred /= self.n_imfs
# 对预测结果进行反归一化处理
y_pred = self.scaler.inverse_transform(y_pred)
return y_pred.reshape(-1)
```
阅读全文